• Title/Summary/Keyword: DC Converter

Search Result 3,437, Processing Time 0.029 seconds

A Study on the Fiber-Optic Voltage Sensor Using EMO-BSO (EOM-BSO 소자를 이용한 광전압센서에 관한 연구)

  • Kim, Yo-Hee;Lee, Dai-Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.119-125
    • /
    • 1990
  • This paper describes fiber optic voltage sensor using EOM-BSO (Electro-Optic Modulator-Bismuth Silicon Oxcide). Transceiver has an electical/optical converter and an optical/electrical converter which consist of light emitting diode, PIN-PD, and electronic circuits. Multimode fiber cable of $100/140{\mu}m$ core/clad diameter is used for connecting the transceiver to fiber cable and fiber optic voltage sensor. Before our experiments, by applying the Maxwell equations and wave equations, We derive matrix equation on wave propagation in the BSO single crystal. And also we derive optimal equation on intensity modulation arising through an analyzer. According to experi-mental results, fiber optic voltage sensor has maximum $2.5{\%}$ error within the applied AC voltage of 800V. As the applied voltage increases, saturation values of voltage sensor also increase. This phenomenon is caused by optical rotatory power of BSO single crystal. And temperature dependence of sensitivity for fiber optical rotatory power of BSO single crystal. And temperature dependence of sensitivity for fiber optic voltage sensor in the temperature range from$-20^{\circ}C\to\60^{\circ}C$ are measured within ${\pm}0.6{\%}$. And frequency characteristics of the voltage sensor has good frequency characteristics from DC to 100kHz.

  • PDF

Fast-Transient Digital LDO Regulator With Binary-Weighted Current Control (이진 가중치 전류 제어 기법을 이용한 고속 응답 디지털 LDO 레귤레이터)

  • Woo, Ki-Chan;Sim, Jae-Hyeon;Kim, Tae-Woo;Hwang, Seon-Kwang;Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1154-1162
    • /
    • 2016
  • This paper proposes a fast-transient digital LDO(Low dropout) regulator with binary-weighted current control technique. Conventional digital LDO takes a long time to stabilize the output voltage, because it controls the amount of current step by step, thus ringing problem is generated. Binary-weighted current control technique rapidly stabilizes output voltage by removing the ringing problem. When output voltage reliably reaches the target voltage, It added the FRZ mode(Freeze) to stop the operation of digital LDO. The proposed fast response digital LDO is used with a slow response DC-DC converter in the system which rapidly changes output voltage. The proposed digital controller circuit area was reduced by 56% compared to conventional bidirectional shift register, and the ripple voltage was reduced by 87%. A chip was implemented with a $0.18{\mu}F$ CMOS process. The settling time is $3.1{\mu}F$ and the voltage ripple is 6.2mV when $1{\mu}F$ output capacitor is used.

Design and Fabrication of Digital 3-axis Magnetometer for Magnetic Signal from Warship (함정 자기신호 측정용 3-축 디지털 자기센서 설계 및 제작에 관한 연구)

  • Kim, Eunae;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.123-127
    • /
    • 2014
  • We developed a digital 3-axis flux-gate magnetometer for magnetic field signal measurement from warship during demagnetizing and degaussing processes. For the magnetometer design, we considered following points; the distance between magnetic field measurement station and magnetometer located under sea is about several 100 m, the magnetometer is exposed to magnetic field of ${\pm}1mT$ during demagnetizing process, and magnetometer is located under the sea about 30 m depth. To overcome long distance problem, magnetometer could be operated on wide input supply voltage range of 16~36 V using DC/DC converter, and for the data communication between the magnetometer and measurement station a RS422 serial interface was employed. To improve perming effect due to the ${\pm}1mT$ during demagnetizing process, magnetometer could be compensated external magnetic field up to ${\pm}1mT$ but magnetic field measuring rang is only ${\pm}100{\mu}T$. The perming effect was about ${\pm}2nT$ under ${\pm}1mT$ external magnetic field. The magnetometer was tested water vessel with air pressure up to 6 bar for the sea water pressure problems. Linearity of the magnetometer was better than 0.01 % in the measuring range of ${\pm}0.1mT$ and noise level was $30pT/\sqrt{Hz}$ at 1 Hz.

Design and Implementation of Wireless Power Transfer System for a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 무선급전 시스템 설계 및 구현)

  • Kang, Seok-Won;Jeong, Rag-Gyo;Byun, Yeun-Sub;Um, Ju-Hwan;Kim, Baek-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.289-298
    • /
    • 2014
  • Recently, the traditional paradigm in railroad technology is changing as more efficient and cost-effective electric vehicle (EV) technologies have emerged. The original concept of PRT (Personal Rapid Transit) proposed in the past has come to be regarded as unrealistic, but its feasibility is improving through the utilization of an EV platform. In particular, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. However, based on the inductive power transfer (IPT) technology, the fast charging of supercapacitors with high energy density can contribute to overcoming this technical challenge and promote the transition to electric-powered ground transportation by improving the appearance of cities. This study discusses the development process of a power supply system for PRT, including concept design, numerical analysis, and device manufacturing, along with performance predictions and evaluations. In terms of results, the system was found to meet the performance requirements for power supply modules on a test-bed.

Design of logic process based 256-bit EEPROM IP for RFID Tag Chips and Its Measurements (RFID 태그 칩용 로직 공정 기반 256bit EEPROM IP 설계 및 측정)

  • Kim, Kwang-Il;Jin, Li-Yan;Jeon, Hwang-Gon;Kim, Ki-Jong;Lee, Jae-Hyung;Kim, Tae-Hoon;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1868-1876
    • /
    • 2010
  • In this paper, we design a 256-bit EEPROM IP using only logic process-based devices. We propose EEPROM core circuits, a control gate (CG) and a tunnel gate (TG) driving circuit, to limit the voltages between the devices within 5.5V; and we propose DC-DC converters : VPP (=+4.75V), VNN (-4.75V), and VNNL (=VNN/3) generation circuit. In addition, we propose switching powers, CG_HV, CG_LV, TG_HV, TG_LV, VNNL_CG, VNNL_TG switching circuit, to be supplied for the CG and TG driving circuit. Simulation results under the typical simulation condition show that the power consumptions in the read, erase, and program mode are $12.86{\mu}W$, $22.52{\mu}W$, and $22.58{\mu}W$ respectively. Furthermore, the manufactured test chip operated normally and generated its target voltages of VPP, VNN, and VNNL as 4.69V, -4.74V, and -1.89V.

The Development of the ±80kV 60MW HVDC System in Korea

  • Park, Kyoung-Ho;Baek, Seung-Taek;Chung, Yong-Ho;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.594-600
    • /
    • 2017
  • HVDC transmission systems can be configured in many ways to take into account cost, flexibility and operational requirements. [1] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance of each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between the source and the load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows the transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing the exchange of power between incompatible networks. This paper proposed to establish Korean HVDC technology through a cooperative agreement between KEPCO and LSIS in 2010. During the first stage (2012), a design of the ${\pm}80kV$ 60MW HVDC bipole system was created by both KEPCO and LSIS. The HVDC system was constructed and an operation test was completed in December 2012. During the second stage, the pole#2 system was fully replaced with components that LSIS had recently developed. LSIS also successfully completed the operation test. (2014.3)

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques (최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정)

  • Baek, Seok-Heum;Choi, Hyun-Jin;Kim, Kwang-Hong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3125-3134
    • /
    • 2010
  • Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.

Development of High-Speed Elevator Drive System using Permanent-magnet Synchronous Motor (영구 자석형 동기 전동기를 이용한 고속 엘리베이터 구동 시스템 개발)

  • 류형민;김성준;설승기;권태석;김기수;심영석;석기룡
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.538-545
    • /
    • 2001
  • In this paper a gearless drive system using a permanent-maget synchronous motor for high speed elevators is addressed. The application of permanent magnet synchronous motor to an elevator traction machine enables several improvements including higher efficiency better ride comfort smaller size and lighter weight and so on A PWM boost converter has been also adopted so that DC-link voltage regulation bi-directional power flow and controllable power factor with reduced input current harmonics are possible. To increase the reliability and performance of overall control system the unified control board which can include the car and group controller as well as PWN converter/inverter controller has been designed based on a DSP TMS320VV33. In addition the dynamic load simulator system has been developed so that the drive system of high speed elevator can be tested and evaluated without and limitation on ride distance. Some experimental results are given to verify the effectiveness of the developed system.

  • PDF

A Fault Tolerant Control Technique for Hybrid Modular Multi-Level Converters with Fault Detection Capability

  • Abdelsalam, Mahmoud;Marei, Mostafa Ibrahim;Diab, Hatem Yassin;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.558-572
    • /
    • 2018
  • In addition to its modular nature, a Hybrid Modular Multilevel Converter (HMMC) assembled from half-bridge and full-bridge sub-modules, is able to block DC faults with a minimum number of switching devices, which makes it attractive for high power applications. This paper introduces a control strategy based on the Root-Least Square (RLS) algorithm to estimate the capacitor voltages instead of using direct measurements. This action eliminates the need for voltage transducers in the HMMC sub-modules and the associated communication link with the central controller. In addition to capacitor voltage balancing and suppression of circulating currents, a fault tolerant control unit (FTCU) is integrated into the proposed strategy to modify the parameters of the HMMC controller. On advantage of the proposed FTCU is that it does not need extra components. Furthermore, a fault detection unit is adapted by utilizing a hybrid estimation scheme to detect sub-module faults. The behavior of the suggested technique is assessed using PSCAD offline simulations. In addition, it is validated using a real-time digital simulator connected to a real time controller under various normal and fault conditions. The proposed strategy shows robust performance in terms of accuracy and time response since it succeeds in stabilizing the HMMC under faults.

CMOS ROIC for MEMS Acceleration Sensor (MEMS 가속도센서를 위한 CMOS Readout 회로)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • This paper presents a CMOS readout circuit for MEMS(Micro Electro Mechanical System) acceleration sensors. It consists of a MEMS accelerometer, a capacitance to voltage converter(CVC) and a second-order switched-capacitor ${\Sigma}{\Delta}$ modulator. Correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques are used in the CVC and ${\Sigma}{\Delta}$ modulator to reduce the low-frequency noise and DC offset. The sensitivity of the designed CVC is 150mV/g and its non-linearity is 0.15%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 10% when the input voltage amplitude increases by 100mV, and the modulator's non-linearity is 0.45%. The total sensitivity is 150mV/g and the power consumption is 5.6mW. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V and a operating frequency of 2MHz. The size of the designed chip including PADs is $0.96mm{\times}0.85mm$.