• Title/Summary/Keyword: DC Converter

Search Result 3,437, Processing Time 0.027 seconds

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.

A Study on Bipolar DC-DC Converter for Low Voltage Direct Current Distribution (저압 직류 배전용 양극성 DC-DC 컨버터에 관한 연구)

  • Lee, Jung-Yong;Kim, Ho-Sung;Cho, Jin-Tae;Kim, Ju-Yong;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.229-236
    • /
    • 2019
  • This study proposes a DC-DC converter topology of solid-state transformer for low-voltage DC distribution. The proposed topology consists of a voltage balancer and bipolar DC-DC converter. The voltage and current equations are obtained on the basis of switching states to design the controller. The open-loop gain of the controller is achieved using the derived voltage and current equations. The controller gain is selected through the frequency analysis of the loop gain. The inductance and capacitance are calculated considering the voltage and current ripples. The prototype is fabricated in accordance with the designed system parameters. The proposed topology and designed controller are verified through simulation and experiment.

Analysis, Design and Development of a Single Switch Flyback Buck-Boost AC-DC Converter for Low Power Battery Charging Applications

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.318-327
    • /
    • 2007
  • The design and performance analysis of a power factor corrected (PFC), single-phase, single switch flyback buck-boost ac-dc converter is carried out for low power battery charging applications. The proposed configuration of the flyback buck-boost ac-dc converter consists of only one switch and operates in discontinuous current mode (DCM), resulting in simplicity in design and manufacturing and reduction in input current total harmonic distortion (THD). The design procedure of the flyback buck-boost ac-dc converter is presented for the battery charging application. To verify and investigate the design and performance, a simulation study of the flyback buck-boost converter in DCM is performed using the PSIM6.0 platform. A laboratory prototype of the proposed single switch flyback buck-boost ac-dc converter is developed and test results are presented to validate the design and developed model of the system.

Analysis and Design of a Soft-Switched PWM Sepic DC-DC Converter

  • Kim, In-Dong;Kim, Jin-Young;Nho, Eui-Cheol;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.461-467
    • /
    • 2010
  • This paper proposes a new soft-switched Sepic converter. It has low switching losses and low conduction losses due to its auxiliary communicated circuit and synchronous rectifier operation, respectively. Because of its positive and buck/boost-like DC voltage transfer function (M=D/(1-D)), the proposed converter is desirable for use in distributed power systems. The proposed converter has versions both with and without a transformer. The paper also suggests some design guidelines in terms of the power circuit and the control loop for the proposed converter.

Analysis, Design and Implementation of an Interleaved DC/DC Converter with Series-Connected Transformers

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.643-653
    • /
    • 2012
  • An interleaved DC/DC converter with series-connected transformers is presented to implement the features of zero voltage switching (ZVS), load current sharing and ripple current reduction. The proposed converter includes two half-bridge converter cells connected in series to reduce the voltage stress of the switches at one-half of the input voltage. The output sides of the two converter cells with interleaved pulse-width modulation are connected in parallel to reduce the ripple current at the output capacitor and to achieve load current sharing. Therefore, the size of the output chokes and the capacitor can be reduced. The output capacitances of the MOSFETs and the resonant inductances are resonant at the transition instant to achieve ZVS turn-on. In addition, the switching losses on the power switches are reduced. Finally, experiments on a laboratory prototype (24V/40A) are provided to demonstrate the performance of the proposed converter.

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

A Controllable LCL-T Resonant AC/DC Converter for High Frequency Power Distribution Systems

  • Zeng, Jun;Li, Xuesheng;Liu, Junfeng
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.876-885
    • /
    • 2015
  • High frequency alternating current (HFAC) has been widely used in a wide range of power distribution systems (PDS) due to its superior performance. A high frequency AC/DC converter plays the role of converting HFAC voltage to DC voltage. In this paper, a new LCL-T resonant AC/DC converter has been proposed, and an easier control method based on input voltage comparison is presented, without the complicated calculation of the zero-crossing point. Both a low distortion and near-to-unity power factor can be achieved by the proposed resonant converter and control strategy. The operational principle and steady-state analysis are given for the proposed resonant converter. A simulation model and experimental prototype are implemented with an operation frequency of 25kHz and a rated power of 20W. The simulation and experimental results verify the accuracy of the analysis and the excellent performance of the proposed topology.

A Remote Control of a Buck-typed DC-DC Converter using DSP (DSP를 이용한 강압형 DC-DC 컨버터의 원격제어)

  • Kim, Youn-Seo;Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.208-214
    • /
    • 2003
  • Because the digital control includes microprocessor different from an analog control, the digital control enables to monitor internal parameters of DC-DC converter and to control output voltage remotely by communicating with a Window based PC and also to monitor whether exact voltage is output or not. These things are impossible in an analog control. In this paper, a simple buck converter controlled by DSP(TMS320C31) is implemented. This converter outputs 0V to 5V from 15V input voltage and is controlled by a PD algorithm using DSP. Finally the response characteristics of a step reference voltage and in a steady state are analyzed to verify the usefulness of this digital controlled converter.

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.

The Parallel Operation of Each other three phase AC/DC Converter using DC Current Droop Control for Multi-parallel DC Distribution System (다병렬 직류배전 시스템의 DC전류 드룹 제어를 이용한 서로 다른 3상 AC/DC컨버터의 병렬운전기법)

  • Lee, Hee-Jun;Hong, Jin-Seok;Hyun, Seung-Wook;Kang, Jin-Wook;Kim, Han-Soo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.42-48
    • /
    • 2015
  • DC distribution system is difficult to compose the single-system because of the capacity restriction of power semiconductors. Therefore, DC Distribution system needs parallel operation of AC/DC converters for increase to system capacity. However, this system generates the circulating current. This paper is reducing the circulating current and safely sharing the load using the proposed DC current droop control method when each other 3-phase AC/DC converter connected. This system confirms through the simulation and experiment. Also, when each other converter of parallel operate. it is compared the response characteristics