비자성층을 사이에 둔 두 강자성층의 보자력 차이를 이용하여 거대자기저항특성을 나타내는 Ta/CoFe/Cu/NiFe/Ta 구조의 pseudo 스핀밸브를 DC 마그네트론 스퍼터링 방법으로 제조하였다. Ta/CoFe/Cu/NiFe/Ta 구조에서 CoFe층의 두께 변화에 따른 자화 특성 및 자기저항 특성을 조사하였으며, 이 구조에서 CoFe층의 두께가 60 $\AA$일 때 자기저항비는 3.82%이고 CoFe층과 NiFe층 사이의 보자력 차이는 27.4 Oe이다. Ta/CoFe/Cu/NiFe/Ta 구조를 갖는 pseudo 스핀밸브에서 CoFe층과 NiFe층의 보자력 차이는 CoFe층의 두께가 20 $\AA$에서 40 $\AA$까지 증가함에 따라 증가하였으며 40 $\AA$ 이상에서는 감소하였다. 이와 같은 결과는 박막의 결정성 및 포화 자기변형(λ$_{s}$)의 변화에 의한 것으로 판단된다. Cu층과 NiFe층 사이에 CoFe층을 삽입한 Ta/CoFe/Cu/NiFe/Ta 구조에서 삽입층인 CoFe층의 두께 변화에 따른 자화특성 및 자기저항 특성을 조사한 결과 CoFe두께가 10$\AA$시 자기저항비가 6.7 %이며. 삼층막 구조 보다 자기저항비가 약 1.5배 이상 증가함을 알 수 있었다.
유리기판위에 큰 결정입자를 갖는 실리콘 (폴리 실리콘) 박막을 제조하는 것은 가격저가화 및 대면적화 측면 같은 산업화의 높은 잠재성을 가지고 있기 때문에 그동안 많은 관심을 가지고 연구되어 오고 있다. 다양한 방법을 이용하여 다결정 실리콘 박막을 만들기 위해 노력해 오고 있으며, 태양전지에 응용하기 위하여 연속적이면서 10um이상의 큰 입자를 갖는 다결정 실리콘 씨앗층이 필요하며, 고속증착을 위해서는 (100)의 결정성장방향 등 다양한 조건이 제시될 수 있다. 다결정 실리콘 흡수층의 품질은 고품질의 다결정 실리콘 씨앗층에서 얻어질 수 있다. 이러한 다결정 실리콘의 에피막 성장을 위해서는 유리기판의 연화점이 저압 화학기상증착법 및 아크 플라즈마 등과 같은 고온기반의 공정 적용의 어려움이 있기 때문에 제약 사항으로 항상 문제가 제기되고 있다. 이러한 관점에서 볼때 유리기판위에 에피막을 성장시키는 방법으로 많지 않은 방법들이 사용될 수 있는데 전자 공명 화학기상증착법(ECR-CVD), 이온빔 증착법(IBAD), 레이저 결정화법(LC) 및 펄스 자석 스퍼터링법 등이 에피 실리콘 성장을 위해 제안되는 대표적인 방법으로 볼 수 있다. 이중에서 효율적인 관점에서 볼때 IBAD는 산업화측면에서 좀더 많은 이점을 가지고 있으나, 박막을 형성하는 과정에서 큰 에너지 및 이온크기의 빔 사이즈 등으로 인한 표면으로의 damages가 일어날 수 있어 쉽지 않는 방법이 될 수 있다. 여기에서는 이러한 damage를 획기적으로 줄이면서 저온에서 결정화 시킬 수 있는 cold annealing법을 소개하고자 한다. 이온빔에 비해서 전자빔의 에너지와 크기는 그리드 형태의 렌즈를 통해 전체면적에 조사하는 것을 쉽게 제어할 수 있으며 이러한 전자빔의 생성은 금속 필라멘트의 열전자가 아닌 Ar플라즈마에서 전자의 분리를 통해 발생된다. 유리기판위에 흡수층 제조연구를 위해 DC 및 RF 스퍼터링법을 이용한 비정질실리콘의 박막에 대하여 두께별에 따른 밴드갭, 캐리어농도 등의 변화에 대하여 조사한다. 최적의 조건에서 비정질 실리콘을 2um이하로 증착을 한 후, 전자빔 조사를 위해 1.4~3.2keV의 다양한 에너지세기 및 조사시간을 변수로 하여 실험진행을 한 후 단면의 이미지 및 결정화 정도에 대한 관찰을 위해 SEM과 TEM을 이용하고, 라만, XRD를 이용하여 결정화 정도를 조사한다. 또한 Hall효과 측정시스템을 이용하여 캐리어농도, 이동도 등을 각 변수별로 전기적 특성변화에 대하여 분석한다. 또한, 태양전지용 흡수층으로 응용을 위하여 dark전도도 및 photo전도도를 측정하여 광감도에 대한 결과가 포함된다.
다른 물질에 비해 많은 우수한 특성을 가지고 있는 CuInSe2(CIS)박막 태양전지는 많은 연구자들에 의해 개발되어 오고 있다. CIS의 대표적인 장점으로는 직접천이형 밴드갭, 높은 흡수계수, 열 안정화상태 및 p형으로의 전도성물질의 가능성 등 다양하다. 또한 간단한 구조를 이용하여 유리같은 싼 기판을 이용하기 때문에 저가형 태양전지로서 많은 각광을 받고 있다. CIGS태양전지는 CIS의 In 사이트에 Ga을 도핑함으로서 만들어지는데 밴드갭은 약 1.4eV이다. CIS박막을 만드는 많은 방법이 존재하나 구성원소로부터 최적화된 조성을 찾을수 있는 방법이 가장 중요한 요소 중의 하나로 인식되고 있으며, 이런점에서 증발법 및 스퍼터링법 등 같은 진공방식이 비진공방식에 비해 훨씬 간편하게 조성비를 맞출수 있다. 그 중에 스퍼터링법은 대면적 박막태양전지로의 가능성으로 비출어 볼때 산업화를 위한 좋은 후보군이 될 수 있다. Selenization을 하기전에 Cu-In-Se의 전구체 조합은 여러개의 타겟으로부터 동시 스퍼터링법이나 다층 전구체법을 사용하여 준비되는데 어떤 방법이 되던지 Se의 부가적인 공급은 불가피하다. 지금까지 많은 관련 연구의 대부분인 구조적, 조성비적 그리고 광학적인 특성평가에 집중되어 오고 있는데, 전기적특성평가의 경우는 면저항, 비저항 같은 간단한 결과 위주로 보고되어 오고 있다. 또한 캐리어농도와 이동도에 대한 보고가 있음에도 불구하고 이해되기에는 충분치 못한 면이 많다.본 발표에서는 태양전지 제조 전단계로서 소다라임유리기판(SLG)위에 Mo의 유무에 따라 CIS박막의 전기적인 특성 변화에 대한 내용을 담고 있다. 소다라임유리($2cm{\times}2cm$)를 기판으로 사용하여 아세톤-에탄올 용액에 초음파세척을 수행하고, Mo 후면전극을 DC 스퍼터링방식을 이용하여 증착을 한다. SLG와 Mo이 코팅된 SLG를 각각 RF 스퍼터 챔버에 이송한 후 수증기 제거를 위해 약 10분간 예열을 한다. 샘플에 대한 전기적특성은 Hall효과 측정장치에 의해 측정이 되며 전기전도도, 캐리어농도, 이동도 및 전도형에 대한 정보가 각각의 변수에 따라 조사된돠. 부가적으로 구조적, 조성비적인 특성을 SEM,XRD 및 EDX를 통해 조사를 하여 전기적 특성에 따른 관계성을 검토한다. SLG와 Mo가 코팅된 SLG위의 CIS박막은 전기적으로 약간 다른 특성을 보일 것으로 예측되며, 이러한 기대를 바탕으로 조성비가 이상적인 화학양론에 근접할 때 p형으로서 제시될 수 있다는 것을 보여줄 것이다.
전기는 우리 주변의 에너지 형태 중에서 가장 편리하고 광범위하게 사용되고 있다. 이러한 전기는 전자제품, 전기자동차, 에너지 저장 플랜트 등 매우 많은 분야에서 저장되고 사용되고 있다. 특히 에너지 저장 용량의 확대는 휴대폰, 노트북 PC 등 휴대용 IT 기기의 성장에 결정적인 역할을 하였다. 가볍고 작으면서도 고용량의 전기 에너지 저장 장치가 없었다면, 통신이나 인터넷 그리고 오락 등 다양한 기능을 작은 휴대용 기기에 구현할 수 없었을 것이다. 그러나 시간이 흐를수록 기기의 요구 성능이 높아지고 소비자의 니즈가 더욱더 다양해지고 고도화될수록 단일 부품으로 가장 큰 부피를 차지하는 에너지 저장 장치의 용량과 디자인은 점점 중요해지고 있다. 이러한 에너지 저장 장치에서 가장 친숙한 형태는 2차 전지 계열이다. 납 축전지를 비롯하여, 니켈수소, 니켈카드뮴, electrochemical capacitor와 Li ion 계열 등이 대표적이다. 특히 Li ion 배터리는 모바일, 자동차 및 에너지 저장 그리드 등과 같은 다양한 분야에 가장 많이 적용되고있다. Li ion 배터리에 대하여 현재의 핵심적인 연구분야는 전극 재료(cathode, anode)와 electrolyte에 대한 것이다. Anode 전극 재료 중에서 가장 많이 사용되는 재료는 카본을 기반으로 하는 재료로 안정성에 대한 장점이 있지만 에너지 밀도가 낮다는 단점이 있다. 에너지 저장 용량 증가에 대한 필요성이 증가하기 때문에 현재 많이 사용되고 있는 에너지 밀도가 낮은 카본 재료를 대체하기 위해서 이론 용량이 높다고 알려진 실리콘과 같은 메탈이나 주석 산화물과 같은 천이 금속 산화물에 대하여 많은 연구가 진행되고 있다. 특히 현재까지 알려진 많은 재료 중에서 가장 큰 capacity (~4,000 mAh/g)를 가지고 있다고 알려진 실리콘이 카본의 대체 재료로 많은 연구가 진행되고 있다. 그러나, Li 과 반응을 하며 약 300~400%에 달하는 부피팽창이 발생하고, 이러한 부피 팽창 때문에 충 방전이 진행됨에 따라 current collector로부터 박리되는 현상을 보여 빠른 용량 감소를 보여주고 있다. 본 연구에서는 adhesion layer를 current collector와 실리콘 전극 재료 사이에 삽입하여 충 방전 시 부피팽창에 의한 미세구조의 변화와 electrochemical 특성에 대한 영향을 알아보았다. 실험에 사용한 anode 전극은 상용 Cu foil current collector에 RF/DC magnetron 스퍼터링을 통해 다양한 종류(Ti, Ta 등)의 adhesion layer과 200 nm 두께의 Si 박막을 증착하였다. 또한 Bio-logic Potentiostat/ Galvanostat VMP3 와 WanAtech automatic battery cycler 장비를 사용하여 0.2 C-rate로 half-cell 타입의 코인 셀로 조립한 전극에 대한 충 방전 실험을 진행하였다. Adhesion layer의 사용으로 인해 실리콘 박막과 Cu current collector 사이의 박리 현상을 줄여줄 수 있었고, 충 방전 시 Cu 원자의 실리콘 박막으로의 확산을 통한 brittle한 Cu-Si alloy 형성을 막아 줄 수 있어 큰 특성 향상을 확인할 수 있었다. 또한, 리튬과 실리콘의 반응을 통한 형태와 미세구조 변화를 SEM, TEM 등의 다양한 장비를 사용하여 확인하였고, 이를 통해 adhesion layer의 사용이 전극의 특성향상에 큰 영향을 끼쳤다는 것을 확인할 수 있었다.
교류형 플라즈마 방전 표시기(AC Plasma Display Panel, AC PDP)에 사용되는 플라즈마는 그 부피가 너무 작아서 플라즈마에 변화를 일으키지 않고 그 물성을 관측하기란 쉬운일이 아니다. 그래서 주로 PDP 내의 물성을 관측하는 데 시뮬레이션에 의존하게 된다. 그 물성중에 PDP내의 전계 분포에 대한 정보는 방전의 형성 및 소멸에 대한 많은 단서를 제공하고 있다. 특히 AC PDP의 경우, 유전체에 형성되는 벽적하(wall charge)가 방전의 형성 및 PDP 구동에 중요한 역할을 하는데, 이는 PDP 내의 전계 분포를 살펴봄으로써 대략 예측할 수 있다. 본 연구에서는 시뮬레이션에 의존하지 않고, 직접 레이저 유도 형광법을 이용하여 AC PDP 내의 전계를 측정하였다. 방전 가스인 헬륨(He)의 에너지 준위는 전계의 크기에 따라 에너지 준위가 변화하여, Rydberg(n$\geq$8) 준위가 여러 개의 준위로 나누어지는 현상이 일어나는데, 이를 Stack 효과라고 한다. 따라서 전계의 세기가 커짐에 따라서 각 준위와 준위 사이 값(splitting)이 커지는데, 이를 이용하면 전계를 측정할 수 있다. 즉, 헬륨 원자를 여기시키는 레이저 파장을 변화시키면서 관측되는 레이저 유도 형광 신호를 관측하면, 준위의 splitting을 관측할 수 있다. 본 연구에서는 PDP 내의 전계의 시간적 변화를 관측하였다. 50%, 40kHz의 구형파를 PDP의 두 전극에 가하였을 때, 플라즈마가 켜진 상태뿐만 아니라 플라즈마가 꺼진 후에도 전계에 의한 Splitting 신호가 관측이 되었는데, 전계로 환산하였을 때, 그 값은 대략 수 kV/cm의 값을 갖았는데, 이는 wall charge에 의한 값으로 사료된다.결과로 생각되어진다.플라즈마의 강도값을 입력하여 플라즈마의 radiation을 검출하고, 스퍼터링 공정중 실질적인 in-situ 정보로 이용하였다. PEM을 통하여 In/Sn의 플라즈마 강도변화를 조사하였다. 초기 In/Sn의 플라즈마 강도(intensity)는 강도를 100하여, 산소를 주입한 결과, plasma intensity가 35 줄어들었고, 이때 우수한 ITO 박막을 얻을 수 있었다. Pulsed DC power를 사용하여 아크 현상을 방지하였다. PET 상에 coating 된 ITO 박막의 표면저항과 광투과도는 4-point prove와 spectrophotometer를 이용하여 분석하였고, AES로 박막의 두께에 따른 성분비를 확인하였다. ITO 박막의 광투과도는 산소의 유량과 sputter 된 In/Sn ion의 plasma emission peak에 따라 72%-92%까지 변화하였으며, 저항은 37$\Omega$/$\square$ 이상을 나타내었다. 박막의 Sn/In atomic ratio는 0.12, O/In의 비율은 In2O3의 화학양론적 비율인 1.5보다 작은 1.3을 나타내었다.로 보인다.하면 수평축과 수직축의 분산 장벽의 비에 따라 cluster의 두께비가 달라지는 성장을 볼 수 있었고, 한 축 방향으로의 팔 넓이는 fcc(100) 표면의 경우 동일한 Ed+Ep값에 대응하는 팔 넓이와 거의 동일한 결과가 나타나는 것을 볼 수 있다. 따라서 이러한 비대칭적인 모양을 가지는 성장의 경우도 cluster 밀도, cluster 모양, cluster의 양 축 방향 길이 비, 양 축 방향의 평균 팔 넓이로부터 각 축 방향의 분산 장벽을 얻어낼 수 있을 것으로 보인다. 기대할 수 있는 여러
FeMn에 의해 교환 바이어스된 Synthetic antiferromagnet(CoFe/Ru/CoFe)을 가진 Top Ta/NiFe/CoFe/Cu/CoFe/Ru/CoFe/FeMm/Ta 스핀밸브 구조를 마그네트론 스퍼터링 법으로 제조하여 유효 교환이방성 및 자기저항 특성을 조사하였다. FeMn 반강자성층의 두께가 100$\AA$정도일 때 자기저항비와 유효 교환바이어스 자장이 최대값을 나타내었으며, 100 $\AA$ 이상 두께 증가시 FeMn층을 통한 션팅 전류에 의한 자기저항 효율의 저하로 자기저항이 점점 감소하였다. 자유층의 두께가 40 $\AA$일 때 7.5% 이상의 최대 자기저항비가 얻어졌으며, 자유층의 두께 감소에 따라 자기저항비는 감소하였다. Synthetic antiferrormagnet 구조에서 Cu층에 인접한 CoFe(Pl)층의 두께를 증가시키고 FeMn층에 인접한 CoFe(P2)층의 두께를 감소시켜 그 두께 차이가 증가할수록 자기저항비는 증가하였고 반면 유효 교환 바이어스 자장은 감소하였다. 자기저항특성의 증가는 Pl층 두께 증가로 인한 스핀의존산란 효율의 증가로 이해되었으며, 유효 교환 바이어스 자장의 감소는 최소에너지 모델의 이론적 계산을 통해 감소경향을 검증할 수 있었다.
본 실험에서는 Non-Conductive Adhesive (NCA) 와 고분자 범프를 이용한 COG (Chip-on-glass) 접합에 대하여 연구하였다. 산화막이 증착된 Si 기판 위에 고분자 범프를 사진식각 방법으로 형성하고, 고분자 범프 위에 직류 마그네트론 스퍼터링 방법으로 금속 박막층을 증착하였다. 기판으로는 Al을 증착한 유리기판을 사용하였다. 두 종류의 NCA를 사용하여 $80^{\circ}C$에서 하중을 변화시켜가며 접합을 실시하였다. 접합부의 특성을 평가하기 위하여 4단자 저항 측정법을 이용하여 접합부의 접속 저항을 측정하였으며, 주사전자현미경을 이용하여 접합부를 관찰하였다. 신뢰성은 $0^{\circ}C$ 와 $55^{\circ}C$ 사이에서 열충격 실험을 2000회까지 실시하여 평가하였다. 신뢰성 측정 전 접합부의 저항 값은 $70-90m{\Omega}$을 나타내었다. 200MPa 이상의 접합 압력에서는 고분자 범프가 NCA 의 필러 파티클에 의해 손상된 것을 관찰하였다. 신뢰성 측정 후 일부 범프가 fail 되었는데 범프의 fail 원인은 범프의 윗부분보다 상대적으로 금속층이 얇게 증착된 범프의 모서리 부분의 금속층의 끊어졌기 때문이었다.
교류형 플라즈마 방전 표시기(AC Plasma Display Panel, AC PDP)의 구동에서의 방전 현상은 기입방전, 유지방전, 소거 방전이 있다. 이중 유지 방전은 표시장치로서의 휘도와 계조의 표현을 위한 방전으로 표시기로서의 효율을 결정하게 된다. 본 연구에서는 유지 방전 전압의 상승 시간의 변화에 따른 방전현상과 휘도, 효율의 변화를 살펴 보았다. 방전 현상에서의 가장 큰 변화는 교류형 플라즈마 방전 표시기의 방전 개시 전압과 방전 유지 전압의 변화이다. 유지 전압의 상승시간이 증가할수록 방전 개시 전압과 방전 유지 전압의 변화이다. 유지 전압의 상승 시간이 증가할수록 방전 개시 전압과 방전 유지 전압의 차(sustain margin)는 감소하여 상승 시간이 1$\mu$s/100V 이상의 영역에서는 방전 개시 전압과 방전 유지 전압이 차이가 없어지게 된다. 이는 방전 유지 전극 위의 유전체에 쌓이게 되는 벽전하(wall charge) 양의 감소에 의한 방전 약화의 영향을 보여질 수 있다. 그러나 방전 유지 전압의 형태와 전류의 시간적인 변화를 살펴보면 이러한 약한 방전은 벽전하의 감소에 의한 방전 시의 전계 감소보다는 방전 전류의 발생 시간이 방전 전압이 증가하여 최고점에 이르지 못한 시간에 위치하여 방전이 형성될 때의 전계가 강하지 못하기 때문인 것을 알 수 있다. 방전 전류를 측정한 결과에 의하면 방전 전류의 시작은 변위 전류가 흐르고 난 후부터 시작되며 그 결과 방전 전류가 최고점에 도달하는 시간은 방전 전압 상승 시간이 길어질수록 낮은 전압에서 형성되게 된다. 또한 방전 유지 전압의 상승 시간이 길어질수록 플라즈마 방전표시기의 휘도와 효율은 낮아지고 이 결과 또한 약한 전계에서의 방전에 의한 결과로 생각되어진다.플라즈마의 강도값을 입력하여 플라즈마의 radiation을 검출하고, 스퍼터링 공정중 실질적인 in-situ 정보로 이용하였다. PEM을 통하여 In/Sn의 플라즈마 강도변화를 조사하였다. 초기 In/Sn의 플라즈마 강도(intensity)는 강도를 100하여, 산소를 주입한 결과, plasma intensity가 35 줄어들었고, 이때 우수한 ITO 박막을 얻을 수 있었다. Pulsed DC power를 사용하여 아크 현상을 방지하였다. PET 상에 coating 된 ITO 박막의 표면저항과 광투과도는 4-point prove와 spectrophotometer를 이용하여 분석하였고, AES로 박막의 두께에 따른 성분비를 확인하였다. ITO 박막의 광투과도는 산소의 유량과 sputter 된 In/Sn ion의 plasma emission peak에 따라 72%-92%까지 변화하였으며, 저항은 37$\Omega$/$\square$ 이상을 나타내었다. 박막의 Sn/In atomic ratio는 0.12, O/In의 비율은 In2O3의 화학양론적 비율인 1.5보다 작은 1.3을 나타내었다.로 보인다.하면 수평축과 수직축의 분산 장벽의 비에 따라 cluster의 두께비가 달라지는 성장을 볼 수 있었고, 한 축 방향으로의 팔 넓이는 fcc(100) 표면의 경우 동일한 Ed+Ep값에 대응하는 팔 넓이와 거의 동일한 결과가 나타나는 것을 볼 수 있다. 따라서 이러한 비대칭적인 모양을 가지는 성장의 경우도 cluster 밀도, cluster 모양, cluster의 양 축 방향 길이 비, 양 축 방향의 평균 팔 넓이로부터 각 축 방향의 분산 장벽을 얻어낼 수 있을 것으로 보인다. 기대할 수 있는 여러 장점들을 보고하고자 한다.성이 우수한 시
Silicon nitride ($SiN_x$) 박막이 상온에서 $SiO_2/Si$ 기판 위에 반응성 직류 마그네트론 스퍼터링 방법에 의하여 증착되었다. 증착된 $SiN_x$ 박막의 조성은 x-ray photoelectron spectroscopy를 이용하여 분석되었으며 Si가 풍부한 $SiN_x$ 박막이 증착되었음을 확인할 수 있었다. 증착된 $SiN_x$ 박막은 annealing 온도와 시간을 변화하여 annealing 되었다. X-ray diffraction (XRD) 분석이 $SiN_x$ 박막 내에 Si의 결정화를 조사하기 위해서 수행되었고, 박막의 광학적 특성과 전기적 특성들이 Si nanodot의 형성을 확인하기 위하여 측정되었다. 그 결과로써, XRD 분석에서 Si으로 예상되어지는 peak을 관찰할 수 있었으며 annealing 시간과 온도가 증가함에 따라서 $SiN_x$ 박막의 photoluminescence intensity는 점진적으로 증가하는 것이 관찰되었다. Annealing 전과 후에 측정된 $SiN_x$ 박막의 capacitance-voltage 특성으로부터 $SiN_x$ 박막 내에 존재하는 Si nanodot에 의하여 electron이나 hole의 trap 효과가 나타남을 예상할 수 있었다.
자체 제작한 고밀도(이론 밀도의 99%) ITO(I $n_2$$O_3$:Sn $O_2$=90 wt%) 타깃과 직류 마그네트론 스퍼터링 방법을 이용하여 산소분압 $P_{o_{2}}$ (0 $P_{o_{2}}$$\leq$$10^{-5}$ torr)와 성장 온도 Ts(10$0^{\circ}C$$T_{s}$$\leq$35$0^{\circ}C$)를 변화시키면서 ITO 박막을 제작하고 전기적, 광학적 특성을 조사하였다. ITO박막의 비저항은 제작 온도가 증가함에 따라 감소하다가 $T_{s}$=30$0^{\circ}C$일 때 최저 비저항값 0.30 mΩ.cm를 나타내었고 $T_{s}$>30$0^{\circ}C$ 이상에서는 약간 증가하였다. $T_{s}$=30$0^{\circ}C$에서 제작한 ITO 박막의 최대 전하 농도는 6.6$\times$$10^{20}$ /㎤이었다. $T_{s}$를 고정하고 ITO 박막 제작 시 사용한 산소분압이 증가함에 따라 전하농도, 전하유동도는 급격하게 감소하여 비저항이 크게 증가하는 것으로 나타났다 ITO박막의 최저 비저항과 최대 전하 유동도는 각각 0.3 mΩ.cm와 39.3 $\textrm{cm}^2$/V.s였다. 또한 가시광 영역 (400~700 nm)에서 ITO박막의 광투과도는 80~90%로 높게 나타났다.나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.