• Title/Summary/Keyword: DC 그리드

Search Result 122, Processing Time 0.021 seconds

Power Hardware-in-the-Loop (PHIL) Simulation Testbed for Testing Electrical Interactions Between Power Converter and Fault Conditions of DC Microgrid (컨버터와 DC 마이크로그리드 사고 상황의 상호작용을 검증하기 위한 실시간 전력 시뮬레이션 테스트 베드)

  • Heo, Kyung-Wook;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.150-157
    • /
    • 2021
  • Nowadays, a DC microgrid that can link various distributed power sources is gaining much attention. Accordingly, research on fault situations, such as line-to-line and line-to-ground faults of the DC microgrid, has been conducted to improve grid reliability. However, the blackout of an AC system and the oscillation of a DC bus voltage have not been reported or have not been sufficiently verified by previous research. In this study, a 20 kW DC microgrid testbed using a power HIL simulation technique is proposed. This testbed can simulate various fault conditions without any additional grid facilities and dangerous experiments. It includes the blackout of the DC microgrid caused by the AC utility grid's blackout, a drastic load increment, and the DC bus voltage oscillation caused by the LCL filter of the voltage source converter. The effectiveness of the proposed testbed is verified by using Opal-RT's OP5707 real-time simulator with a 3 kW prototype three-port dual-active-bridge converter.

The Coordination Control of DC Microgrid on the Whole Operation Range (직류형 마이크로그리드의 전운전영역을 고려한 협조제어)

  • Choi, Daehee;Zhu, Shou-Zhen;Min, Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.864-871
    • /
    • 2015
  • Recently, one of the main research on the power distribution system is the microgrid. The microgrid is a combination of power sources and loads, which is controllable and has separable connection. The main objective of microgrid is the deployment of the renewable clean energy and the enhancement of load-side reliability. The modern power sources and loads have DC I/O interfaces, which is the major advantage of DC microgrid compared to the conventional AC grid. The components in the microgrid have diverse features, so there is need of proper coordination control. For achieving economic feature, the active power of renewable energy resources is regarded as major control parameter and the whole operation modes of DC microgrid are defined, and the proper operations of each component are described. From the inherent characteristics of DC, there are two control variables: voltage and active power. Through analysis of operation modes, it is possible to determine exact control objectives and optimized voltage & power control strategy in each mode. Because of consideration of whole operation modes, regardless of the number and capacity of components, this coordination control method can be used without modification. This paper defines operation mode of DC microgrid with several DC sources and suggests economic and efficient coordinated control methods. Simulation with PSCAD proves effectiveness.

NeW Output Voltage Control Scheme Based on SoC Variation of BESS Applicable for Stand-alone DC Microgrid (독립형 DC 마이크로그리드에 적용 가능한 BESS의 SoC를 기반으로 한 새로운 출력전압 제어기법)

  • Yu, Seung-Yeong;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1176-1185
    • /
    • 2016
  • This paper proposes a new output voltage control scheme based on the SoC variation of the battery energy storage system (BESS) applicable for the stand-alone DC microgrid. The proposed control scheme provides relatively lower variation of the DC grid voltage than the conventional droop method. The performance of proposed control scheme was verified through computer simulations for a typical stand-alone DC microgrid which consists of BESS, photo-voltaic (PV) panel, engine generator (EG), and DC load. A scaled hardware prototype for the stand-alone DC microgrid with DSP controller was set up in the lab, and the proposed control algorithm was installed in the DSP controller. The test results were compared with the simulation results for performance verification and actual system implementation.

Study for Calcularion and measurement of HVDC loss (HVDC 손실 계산 및 측정에 대한 연구)

  • CHOI, Yong-Kil
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.69-70
    • /
    • 2015
  • 100년전 토마스 에디슨이 주장한 직류 전력 전송 방식인 DC 송전은 AC 송전보다 장거리 송전 시 손실이 적고 안정도가 좋다. 또한 다른 주파수를 가진 두 지역을 연계하여 전력을 전송 할 수있으며 전력 조류를 제어할 수 있다는 장점을 가지고 있다. 그러나, AC와 DC전력간의 변환 장치를 필요로 하여 설비 구축 비용이 비싸다는 점과 고도의 제어기술 및 검증 기술이 요구된다는 단점은 이제 굳이 논할 필요도 없는 사실이다. 이에 수년전부터 국내에서도 손실이 적고 안정도가 좋다는 장점이 지속적으로 부각되고 있으며 친 환경 발전 및 스마트 그리드의 호황 속에 DC 송전 기술의 필요성은 차세대 기술로 각광받으며 DC 고압 직류 방식인 HVDC (High Voltage Direct Current, 이하 HVDC)에 대한 연구 및 사업이 시작되었다. 그러나, HVDC 시스템의 손실 측정은 계산으로 인해 이루어지고 있으며, 이에 대한 실측 방안은 현재 없다. 또한 시스템 설계 시, 고려해야 하는 시스템의 Feasibility 및 신뢰성에서 손실은 중요한 지표 중의 하나이다. 그러나, HVDC 를 개발하고 설치, 운전하여 양도 또는 인수하는 과정에서 손실은 전력 요금과 직결되기 때문에 계산 및 측정에 대한 논란이 있는 실정이다. 계산 및 측정하는 HVDC의 손실은 무부하 손실 및 부하 손실로 구분된다. 본 논문에서는 현재 사용되고 있는 손실 계산 방법을 소개하고 당사에서 측정을 실시한 HVDC 손실 측정 방법에 대해서 소개하고자 한다.

  • PDF

A study on the Design of Output 380V DC-DC Converter for LVDC Distribution (LVDC 배전을 위한 출력 380V DC-DC 컨버터 설계에 관한 연구)

  • Kim, Phil-Jung;Yang, Seong-Soo;Oh, Byeong-Yun
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.208-215
    • /
    • 2020
  • In this study, the output 380V direct current DC-DC converter for low-voltage direct current(LVDC) distribution was designed in three types, and the voltage and current characteristics of the three types of DC-DC converter were compared and analyzed through simulation. When the converter was configured using a parallel structure with the power metal-oxide semiconductor field-effect transistor and two current suppression insulated-gate bipolar transistors(IGBTs), the time when the output voltage was stabilized at DC 380V was relatively short with 9ms and the range of output current changes was also between 44.8A and 50.2A, indicating that the width of change was much smaller and the effect of current suppression was greater compared to when IGBT was not applied(68~83A). These results suggest that the proposed DC-DC converter for LVDC distribution is likely to be applied to smart grid construction.

A Study on DC Interruption Technology using a Transformer Type Superconducting Fault Current Limiter to Improve DC Grid Stability (DC 그리드 안정성 향상을 위해 변압기형 초전도 한류기가 적용된 직류 차단 기술에 관한 연구)

  • Hwang, Seon-Ho;Choi, Hye-won;Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.595-599
    • /
    • 2018
  • Interruption system with the transformer type superconducting fault current limiter(TSFCL) is proposed in this paper. The interruption system with a TSFCL is a technology that it maximizes the interruption function of a mechanical DC circuit breaker using a transformer and a superconducting fault current limiter. By a TSFCL, the system limits the fault current till the breakable current range in the fault state. Therefore, the fault current could be cut off by a mechanical DC circuit breaker. The Interruption system with a TSFCL were designed using PSCAD/EMTDC. In addition, the Interruption system with a TSFCL was applied to the DC test circuit to analyze characteristics of a current-limiting and a interruption operation. The simulation results showed that the Interruption system with a TSFCL interrupted the fault current in a stable when a fault occurred. Also, The current-limiting rate of the Interruption system with a TSFCL was approximately 69.55%, and the interruption time was less than 8 ms.

Optimized Design and Coordinated Control for Stand-alone DC Micro-grid (독립형 DC 마이크로그리드의 최적화 설계와 협조적 제어)

  • Han, Tae-Hee;Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2013
  • This paper describes the coordinated droop control method for stand-alone type DC micro-grid to improve reliability and utilization of distributed generations and energy storage. The stand-alone type DC micro-grid consists of several distributed generations such as a wind power generation, solar power and micro-turbine, and energy storage. The proposed method which is based on autonomous control method shows high reliability and stability through coordinated droop control of distributed generations and energy storage and also capability of battery management. The operation of stand-alone type DC micro-grid was analyzed using detail simulation model with PSCAD/EMTDC software. Based on simulation results, a hardware simulator was built and tested with commercially available components and performance of system was verified.

Demonstration of Voltage Control of DC Distribution System Using Real-time DC Network Analysis Applications (실시간 DC 계통해석 응용프로그램을 이용한 DC 배전망 전압제어 실증 연구)

  • Kim, Hong-joo;Cho, Young-pyo;Cho, Jin-tae;Kim, Ju-yong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.275-286
    • /
    • 2019
  • This paper presents real-time Direct Current (DC) network analysis applications for operation of DC distribution system or DC microgrid. These applications are installed on central Energy Management System (EMS) and provide solutions of DC network operation. To analysis DC distribution network, this paper proposes composition and sequence of applications. Algorithm of applications is presented in this paper. Demonstration tests are performed on DC distribution site in Gochang Power Testing Center of Korea Electric Power Corporation (KEPCO). To verify the performance, developed DC applications installed on EMS. Scenarios for demonstration test of voltage control are presented. Finally, measured data, application output data and simulation data (by PSCAD/EMTDC) are compared and analyze accuracy of applications.

A Study on the Establishment of the Microgrid in Chujado Island (추자도 마이크로그리드 구축에 관한 연구)

  • Kang, Min-Hyeok;Kim, Dong-Wan;Kim, Eel-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.289-294
    • /
    • 2019
  • At present, domestic small islands mainly supply electric power using diesel generators. However, diesel generators can cause instability of the power system due to slow response on power load fluctuation, and cause environmental problems due to the emission of carbon gas by using fossil fuels. In order to overcome this problem, this paper proposes a method to establish an optimal microgrid by introducing solar power, wind power, and energy storage device to Chujado Island, which is supplied with electric power through a diesel generator. The economical optimum capacity of each distributed power source is calculated by using HOMER (Hybrid Optimization Model for Multiple Energy Resources) program and the proposed microgrid is validated by using PSCAD/EMTDC (Power Systems Computer Aided Design/ Electromagnetic Transients including DC) program which can analyze system stability.

The Electrochemical Properties of Supercapacitor for Smart Grid Energy Storage System with Variation of MWCNT/Super P Content (스마트 그리드 에너지 저장시스템 슈퍼커패시터의 MWCNT/Super P 함량에 따른 전기 화학적 특성)

  • Lee, Du-Hee;Lee, Kyoung-Min;Yoon, Jung-Rag
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.843-847
    • /
    • 2010
  • This paper in concerned with the electrochemical properties for supercapacitor of composition with variation of super P/MWCNTs(multi-walled carbon nanotubes) contents. Electrochemical properties of the super P/MWCNTs were measured by cyclic voltammetry at the scan rates of 0.5 mV/s is $TEABF_4$(tetra-ethyl-ammonium-tetra-fluoro-borate) as electrolytes. As a result, the composition for 6 wt% content of MWCNTs led to an increase of capacitance, but DC resistance were decreased. It was found that the content and dispersion appearance of MWCNTs was attributed to the increase in capacitance and lower DC resistance.