• Title/Summary/Keyword: DC/DC buck converter

Search Result 389, Processing Time 0.029 seconds

Efficiency improvement of a DC/DC converter using LTCC substrate

  • Jung, Dong Yun;Jang, Hyun Gyu;Kim, Minki;Park, Junbo;Jun, Chi-Hoon;Park, Jong Moon;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.811-819
    • /
    • 2019
  • We propose a substrate with high thermal conductivity, manufactured by the low-temperature co-fired ceramic (LTCC) multilayer circuit process technology, as a new DC/DC converter platform for power electronics applications. We compare the reliability and power conversion efficiency of a converter using the LTCC substrate with the one using a conventional printed circuit board (PCB) substrate, to demonstrate the superior characteristics of the LTCC substrates. The power conversion efficiencies of the LTCC- and PCB-based synchronous buck converters are 95.5% and 94.5%, respectively, while those of nonsynchronous buck converters are 92.5% and 91.3%, respectively, at an output power of 100 W. To verify the reliability of the LTCC-based converter, two types of tests were conducted. Storage temperature tests were conducted at -20 ℃ and 85 ℃ for 100 h each. The variation in efficiency after the tests was less than 0.3%. A working temperature test was conducted for 60 min, and the temperature of the converter was saturated at 58.2 ℃ without a decrease in efficiency. These results demonstrate the applicability of LTCC as a substrate for power conversion systems.

ZVS PWM Converter For Battery Charger (배터리 충전기용 영전압 PWM 컨버터)

  • 정규범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.375-381
    • /
    • 1998
  • Zero Voltage Switched (ZVS) Pulse Width Modulation (P~마1) converter which operates a fixed frequency is proposed in this paper. The main switches of the converter are always switched at zero voltage, and the auxiliaη switches are s softly switched, The voltage and current stresses of the switches are minimized as low as in conventional PWM converters, The suggested buck typed converter is analyzed. designed for a battery charger. The designed characteristics are experimentally verified by the results of the buck type converter.

  • PDF

Improved DC-DC Bidirectional Converter (개선된 DC-DC 양방향 컨버터)

  • Kim, Seong-Hwan;Hur, Jae-Jung;Jeong, Bum-Dong;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.76-82
    • /
    • 2017
  • Since the introduction of electronically controlled engines and electric propulsion ships, the need for an uninterruptible power supply for emergency power supply devices that use batteries has gained importance. The bidirectional converter in such emergency power supply devices is a crucial component. This paper proposes, a topology for an improved DC-DC bidirectional converter that is characterized by a high voltage conversion ratio and low voltage stress of switches. To confirm the performance of the converter, a computer simulation was executed with PSIM software. The conversion ratio of the proposed converter was found to be four times higher than the conventional boost converter in step-up mode and one-fourth that of the conventional buck converter in step-down mode, and the voltage stress of the switches was one-fourth of the high-side voltage. Moreover, the proposed converter was confirmed to be able to distribute equal currents between two interleaved modules without using any extra current-sharing control method because of the charge balance of its blocking capacitors.

Bidirectional ZVS PWM Sepic/Zeta Converter with Low Conduction Loss and Low Switching Loss (저스위칭손실 및 저도통손을 갖는 양방향 ZVS PWM Sepic/Zeta 컨버터)

  • Paeng, S.H.;Lee, B.C.;Choi, S.H.;Kim, I.D.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.549-551
    • /
    • 2005
  • Bidirectional DC/DC converters allows transfer of power between two dc sources, in either direction. Due to their ability to reverse the direction of flow of power, they are being increasingly used in many applications such as battery charger/dischargers, dc uninterruptible power supplies, electrical vehicle motor drives, aerospace power systems, telecom power supplies, etc. This paper proposes a new bidirectional Sepic/zeta converter. It has low swicthing loss and low conduction loss due to auxiliary communicated circuit and synchronous rectifier operation, respectively. Because of positive and buck/boost-like DC voltage transfer function(M=D/1-D), the proposed converter is very desirable for use in distributed power system . The proposed converter also has both transformerless version and transformer one.

  • PDF

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.

Analysis of Emission Characteristics of DC/DC Converter with different Parts Layout (부품배치가 다르게 제작된 DC/DC컨버터의 Emission 특성분석)

  • Park, Jin-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.179-183
    • /
    • 2019
  • The system stability must be ensured from the switching noise due to the power conversion efficiency and power conversion system miniaturization. Therefore, countermeasures to reduce switching noise during power conversion are essential. Thus, in the previous paper, we constructed the DC / DC Buck Converter circuit using MPQ4432 driver of MPS, and simulated the switching noise characteristics which occurs when the components are arranged differently in the 4 - layer PCB circuit structure with reference plane. In this paper, two different simulated circuits are fabricated and the characteristics of the conducted emission and the radiated emission are analyzed in the same way as the simulation. As a result, it was confirmed that the Conducted Emission characteristic was reduced by 2 ~ 9dB in the low frequency band and 6 ~ 7dB in the high frequency band depending on the configuration of the current return path. And the radiated emission characteristic is reduced by 9 dB. Conducted emission simulation results show that 6 ~ 7dB in the low frequency range and 2 ~ 9dB in the measurement result are somewhat different. In the high frequency band, it is confirmed that the experimental and simulation results are about 7dB. And Radiated Emission confirmed 12dB decrease in simulation, but confirmed decrease of 9dB in measurement result. It is confirmed that there is a slight difference in the amount of reduction, but the design of the power conversion circuit improves the noise characteristics according to the configuration of the current return path.

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.

Development of DC Controller for Battery Control for Elevator Car

  • Lee, Sang-Hyun;Kim, Sangbum
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.103-111
    • /
    • 2021
  • Among transport vehicles, Special Vehicles (SVs) are seriously exposed to energy and environmental problems. In particular, elevator cars used when moving objects in high-rise buildings increase the engine's rotational speed (radian per second: RPM). At this time, when the vehicle accelerates rapidly while idling, energy consumption increases explosively along with the engine speed, and a lot of soot is generated. The purpose of this paper is to develop a bi-directional DC-DC converter for control of vehicle power and secondary battery used in an elevated ladder vehicle (EC) used in the moving industry. As a result of this paper, the performance test of the converter was conducted. The charging/discharging state of the converter was simulated using DC power supply and DC electronic load, and a performance experiment was conducted to measure the input/output power of the converter through a power meter. Through this experimental result, it was confirmed that the efficiency was more than 92% in Buck mode and Boost mode at maximum 1.2kW output.

A Noval High Efficiency Grid Connected 1kW PCS for Fuel Cell (새로운 고효율 계통연계 1kW 연료전지용 PCS)

  • Kim, Tae-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.417-422
    • /
    • 2008
  • In this paper, a novel DC/DC low-voltage high-current converter circuit is proposed to improve the efficiency of power converter used in the grid-connected fuel-cell generator system. We proposed a novel high efficiency grid-connected power conditioning system for RPG fuel cell. On the result of that, the loss of system was decreased rapidly by driving stack within the condition of maximum efficiency. The peak currents of the current-type inductor and the transformer's coil are reduced by synchronizing switching frequency of Buck-type converter is increased twice as the Push-Pull converter's switching frequency. The novel structure of DC/DC converter is able to realize ZVS-ZCS in fuel-cell system is proposed. The proposed switching component of Push-Pull converter has the ZVS and ZCS function by using the circuit of new passive clamp.

A DC-DC Converter using LTCC Technology (LTCC 기술을 이용한 DC-DC 컨버터)

  • Kim, Chan-Young;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.150-152
    • /
    • 2004
  • An integrated inductor using the low temperature cofiring ceramics(LTCC) technology was fabricated. The inductor has Ag circular spiral coil with 16 turns (2-turn x 8-layer) and has a dimension of 11.52mm diameter and 0.71mm thick. For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured one. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1.32W output power and 1MHz switching frequency using the inductor fabricated was developed. For the converter the maximum efficiency of about 81% was obtained.

  • PDF