• Title/Summary/Keyword: DC/DC Power converter

Search Result 2,924, Processing Time 0.028 seconds

Study on Power Conditioning System for Fuel Cell Power Generation with 2-Stage DC-DC Converter and Inverter (2단 구성 DC-DC 컨버터와 인버터에 의한 연료전지발전 계통연계시스템 연구)

  • Ju, Young-Ah;Oh, Eun-Tae;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1551-1558
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a LLC resonant DC-DC converter and 3-phase inverter. The LLC resonant converter boosts the fuel cell voltage of 26-48V up to 400V, using the hard-switching boost converter and the high-frequency ZVS half-bridge converter. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW LLC resonant converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize a real interconnection system for the fuel-cell power generation.

An 18-Pulse Full-Wave AC-DC Converter for Power Quality Improvement

  • Singh, Bhim;Gairola, Sanjay
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.109-120
    • /
    • 2008
  • In this paper, a novel delta/double-fork transformer based 18-pulse full-wave AC-DC converter is designed, modeled, simulated and developed to feed isolated DC varying loads. The proposed AC-DC converter is used for low voltage and large current DC loads in applications such as electrowinning, where isolation is required mainly for stepping down the supply voltage. The proposed converter improves power quality at AC mains and meets IEEE-519 standard requirements at varying loads.

Study on conversion efficiency of RF-DC converter with series diode (직렬 연결 RF-DC 변환기의 변환효율에 관한 연구)

  • Choi, Ki-Ju;Hwang, Hee Yong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.69-73
    • /
    • 2010
  • In this paper, we designed the RF-DC converter used in wireless power transmission system and studied how to design the RF-DC converter of high conversion efficiency. The RF-DC converter operate at 2.45GHz and the diode is connected with series. The RF-DC converter uses shorted stub for DC loop and matching. We can divide the RF-DC converter circuit into four blocks. The reflection coefficients between the blocks were optimized for the maximum conversion efficiency at 0 dBm input power and $1300{\Omega}$ load impedance. The final design of the RF-DC converter has a 52 percent conversion efficiency.

  • PDF

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

Development of Low-profile DC/DC Converter Using PCB Transformer (PCB변압기를 이용한 초박형 DC/DC컨버터 개발)

  • Kim, Dong-Hyung;Choi, Byung-Cho;Lee, Ki-Jo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.476-479
    • /
    • 2002
  • The proposed DC/DC converter employs a pair of neighboring printed-circuit-board windings as a coreless transformer Thus, the proposed DC/DC converter can be fabricated In an ultra low-profile fashion. The performance of the proposed low-profile DC/DC converter is confirmed with experiments on a prototype converter that delivers 58W of power at the maximum efficiency of $84\%$.

  • PDF

Investigation and Circuit Analysis for DC-DC Converter (DC-DC Converter 특성검토 및 회로해석)

  • Hwang, Su-Seol;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • A DC-DC converter is a device that accepts a DC input voltage and produces a DC output voltage. Typically the output produced is at a different voltage level than the input. In addition, DC-DC converters are used to provide noise isolation, power bus regulation, etc. In this paper, it reviews some kinds of the popular DC-DC converter topolopgies and performs simulation selected basic type of DC-DC Converter.(Buck-type Converter)

  • PDF

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation (비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터)

  • Yang, Min-Kwon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

Design and Analysis of a Triple Output DC/DC Converter with One Switch for Photovoltaic Multilevel Single Phase Inverter (태양광 멀티레벨 단상 인버터를 위한 단일 스위치를 가지는 삼중 출력 DC/DC 컨버터 설계 및 해석)

  • Choi, Woo-Seok;Park, Sung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.82-89
    • /
    • 2014
  • The industrial products to use single phase inverter are raised the necessity of power quality improvement, such as AC Motor Driver, Lighting, Renewable energy power converter. Also, it is increasing that applied the single phase multilevel inverter for high quality power at renewable energy power converter. Especially, the photovoltaic multilevel inverters have at least more than two DC_Link and more than one DC/DC Converter. This paper proposes a triple output DC/DC Converter with one switch for photovoltaic multilevel inverter. The proposed converter has advantages of low cost and volume because it has one switch. The operation principle of the converter is analyzed and verified. A prototype is implemented to verify of the proposed converter.

Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.20-28
    • /
    • 2009
  • This paper presents the design of zero current switching ZCS pulse frequency modulation type DC-DC converter for magnetron power supply. A magnetron serving as the microwave source in a microwave oven is driven by a switch mode power supply (SMPS). SMPSs have the advantages of improved efficiency, reduced size and weight, regulation and the ability to operate directly from the converter DC bus. The demands of the load system and the design of the power supply required to produce constant power at 4[kV]. A magnetron power supply requires the ability to limit the load current under short circuit conditions. The current source series resonant converter is a circuit configuration which can achieve this. The main features of the proposed converter are an inherent protection against a short circuit at the output, a high voltage gain and zero current switching over a large range of output power. These characteristics make it a viable choice for the implementation of a high voltage magnetron power supply.