• Title/Summary/Keyword: DC/DC Converters

Search Result 840, Processing Time 0.021 seconds

DSP Based Series-Parallel Connected Two Full-Bridge DC-DC Converter with Interleaving Output Current Sharing

  • Sha, Deshang;Guo, Zhiqiang;Lia, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.673-679
    • /
    • 2010
  • Input-series-output-parallel (ISOP) connected DC-DC converters enable low voltage rating switches to be used in high voltage input applications. In this paper, a DSP is adopted to generate digital phase-shifted PWM signals and to fulfill the closed-loop control function for ISOP connected two full-bridge DC-DC converters. Moreover, a stable output current sharing control strategy is proposed for the system, with which equal sharing of the input voltage and the load current can be achieved without any input voltage control loops. Based on small signal analysis with the state space average method, a loop gain design with the proposed scheme is made. Compared with the conventional IVS scheme, the proposed strategy leads to simplification of the output voltage regulator design and better static and dynamic responses. The effectiveness of the proposed control strategy is verified by the simulation and experimental results of an ISOP system made up of two full-bridge DC-DC converters.

A New Sensorless Control Scheme Using Simple Duty Feedback Technique in DC-DC Converters (DC-DC 컨버터에서 Duty Feedback 을 이용한 새로운 센서리스 제어 기법)

  • Noh Hyeong-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.115-118
    • /
    • 2001
  • This paper presents a new sensorless control scheme using simple duty signal feedback technique in DC-DC converters. The proposed sensorless control scheme (DFC) has the characteristics that they show the same as operation performance of current mode control by using duty feedback technique without current sensor as well as present better dynamic response performance than conventional sensorless current mode control (SCM) in case that input source is perturbed by step change or DC input source includes the . harmonics. Also, the proposed control scheme has good noise immunity and simple control circuits since they have one feedback loop, and can be applied to all DC-DC converters. The concept and control principles of the proposed control scheme are explained in detail and the validity of the proposed control scheme is verified through several interesting simulated results.

  • PDF

Study on Transformer Saturation in Isolated Full-Bridge DC-DC Converters (절연형 풀브리지 DC-DC 컨버터에서의 변압기 포화에 관한 연구)

  • Kim, Jeonghun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2020
  • Transformer saturation in full bridge (FB) isolated DC-DC converters is caused by uneven switching speeds and voltage drops in semiconductor devices and mismatched gate signals. In order to prevent transformer saturation, most popular and widely used approach is to insert a capacitor in series with the transformer windings. This study conducts extensive analyses on transformer saturation and the effect of DC blocking capacitors when they are placed in the primary or secondary windings of a transformer. The effect of the DC blocking capacitors is verified in voltage-fed and current-fed FB converters.

Power Decoupling of Single-phase DC/AC inverter using Dual Half Bridge Converter (듀얼 하프브리지 컨버터를 사용하는 파워 디커플링 DC/AC 인버터)

  • Irfan, Mohammad Sameer;Ahmed, Ashraf;Park, Joung-hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.421-422
    • /
    • 2015
  • Nowadays, bidirectional DC-DC converters are becoming more into picture for different applications especially electric vehicles. There are many bidirectional DC-DC converters topologies; however, voltage-fed Dual Half-Bridge (DHB) topology has less number of switches as compared to other isolated bidirectional DC-DC converters. Furthermore, voltage fed DHB has galvanic isolation, high power density, reduced size, high efficiency and hence cost effective. Electrolytic capacitors always have problem regarding size and reliability in DC-AC single phase inverters. Therefore, voltage-fed DHB converter is proposed for the purpose of power decoupling to replace electrolytic capacitor by film capacitors. A new control strategy has been developed for 120Hz ripple rejection, and it was verified by simulation.

  • PDF

On-line Remote Diagnosis System for DC Bus Capacitor of Power Converters Using Zigbee Communication (Zigbee통신을 이용한 전력변환기기의 DC Bus 커패시터의 온라인 원격 고장진단 시스템)

  • Chung, Wan-Sup;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • DC bus electrolytic capacitors are used in variety of equipments as smoothing element of the power converters because it has high capacitance for its size and low price. It is responsible for frequent breakdowns of many static converters and inverter drive systems. Therefore it is important to diagnosis monitoring the condition of an electrolytic capacitor in real-time to predict the failure of power converter. In this paper, the on-line remote diagnosis monitoring system for DC BUS electrolytic capacitors of power converter using low-cost type Zigbee communication modules is developed. To estimate the health status of the capacitor, the equivalent series resistor(ESR) of the component has to be determined. The capacitor ESR is estimated by using RMS computation using AC coupling method of DC link ripple voltage/current. The Zigbee communication-based experimental results show that the proposed remote DC capacitor diagnosis monitoring system can be applied to DC/DC converter and UPS successfully.

Minimum Time Regulation of DC-DC Converters in Damping Mode with an Optimal Adjusted Sliding Mode Controller

  • Jafarian, Mohammad Javad;Nazarzadeh, Jalal
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.769-777
    • /
    • 2012
  • In this paper, a new development in the time optimal control theory in sliding mode control systems for multi-quadrant buck converters with a variable load is presented. In general, the closed-loop time optimal control system is applied to multi-quadrant buck converters for output regulation, so that an optimal switching surface is obtained. Moreover, an adjusted optimal sliding mode controller is suggested which adjusts the controller parameters to give an optimal switching surface. In addition, a description of the transient response of the closed-loop system is proposed and used to damp any output or input disturbances in minimum time. Numerical simulations and experimental results are employed to demonstrate that the output regulation time and transient performances of dc/dc converters using the proposed technique are improved effectively when compared to the classical sliding mode control method.

Design of an Integrated Inductor with Magnetic Core for Micro-Converter DC-DC Application

  • Dhahri, Yassin;Ghedira, Sami;Besbes, Kamel
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • This paper presents a design procedure of an integrated inductor with a magnetic core for power converters. This procedure considerably reduces design time and effort. The proposed design procedure is verified by the development of an inductor model dedicated to the monolithic integration of DC-DC converters for portable applications. The numerical simulation based on the FEM (finite elements method) shows that 3D modeling of the integrated inductor allows better estimation of the electrical parameters of the desired inductor. The optimization of the electrical parameter values is based on the numerical analysis of the influence of the geometric parameters on the electrical characteristics of the inductor. Using the VHDL-AMS language, implementation of the integrated inductor in a micro Buck converter demonstrate that simulation results present a very promising approach for the monolithic integration of DC-DC converters.

DC Link Currents in Frequency Domain for Three-Phase AC/DC/AC PWM Converters

  • Park Young-Wook;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.169-173
    • /
    • 2001
  • In this paper, dc link ripple currents for three-phase ac/dc/ac PWM converters are ana lysed in a frequency domain. The expression of the harmonic currents is developed by using switching functions and exponential Fourier series expansion. The dc link ripple currents with regard to power factor and modulation index are investigated. In addition, the effect of the displacement angle between the switching periods of line-side converters and load-side inverters on the dc link ripple current is studied. The result of the dc link current analysis is helpful in specifying the dc link capacitor size and its lifetime estimation.

  • PDF

Mitigation of Voltage Unbalances in Bipolar DC Microgrids Using Three-Port Multidirectional DC-DC Converters

  • Ahmadi, Taha;Rokrok, Esmaeel;Hamzeh, Mohsen
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1223-1234
    • /
    • 2018
  • In this paper, a new three-port multidirectional DC-DC converter is proposed for integrating an energy storage system (ESS) to a bipolar DC microgrid (BPDCMG). The proposed converter provides a voltage-balancing function for the BPDCMG and adjusts the charge of the ESS. Thanks to the multi-functional operation of the proposed converter, the conversion stages of the system are reduced. In addition, the efficiency and weight of the system are improved. Therefore, this converter has a significant capability when it comes to use in portable BPDCMGs such as electric DC ships. The converter modes are analyzed and small-signal models of the converter in each of the independent modes are extracted. Finally, comprehensive simulation studies are carried out and a BPDCMG laboratory prototype is implemented in order to verify the performance of the proposed voltage balancer using the burst mode control scheme.

Design and Implementation of a Power Conversion Module for Solid State Transformers using SiC MOSFET Devices (배전용 반도체 변압기 구현을 위한 SiC MOSFET 기반 전력변환회로 단위모듈 설계에 관한 연구)

  • Lim, Jeong-Woo;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.109-117
    • /
    • 2017
  • This paper describes the design and implementation of a unit module for a 10 kVA class 13.2 kV/220 V unidirectional solid-state transformer (SST) with silicon-carbide metal-oxide-semiconductor field-effect transistors. The proposed module consists of an active-front-end (AFE) converter to interface 1320 V AC voltage source to 2500 V DC link and an isolated resonant DC-DC converter for 500 V low-voltage DC output. The design approaches of the AFE and the isolated resonant DC-DC converters are addressed. The control structures of the converters are described as well. The experiments for the converters are performed, and results verify that the proposed unit module can be successfully adopted for the entire SST operation.