• Title/Summary/Keyword: DC/DC

Search Result 13,316, Processing Time 0.038 seconds

Design of Robust DC-DC Converter by High-Order Approximate 2-Degree-of-Freedom Digital Controller

  • Takegami, E.;Tomioka, S.;Watanabe, K.;Higuchi, K.;Nakano, K.;Kajikawa, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.232-237
    • /
    • 2004
  • In many application of DC-DC converters, loads cannot be specified in advance, i.e., their amplitudes are suddenly changed from the zero to the maximum rating. Generally, design conditions are changed for each load and then each controller is re-designed. Then, a so-called robust DC-DC converter which can cover such extensive load changes and also input voltage changes with one controller is needed. Analog control IC is used usually for the controller of DC-DC converter. Simple integral control etc. are performed with the analog control IC. However it is difficult to retain sufficient robustness of DC-DC converter by these techniques. The authors proposed the method of designing an approximate 2-degree-of-freedom (2DOF) controller of DC-AC converter. This controller has an ability to attain sufficient robustness against extensive load and DC power supply changes. For applying this approximate 2DOF controller to DC-DC converter, it is necessary to improve the degree of approximation for better robustness. In this paper, we propose a method of designing good approximate 2DOF digital controller which makes the control bandwidth wider, and at the same time makes a variation of the output voltage very small at a sudden change of resistive load. The proposed good approximate 2DOF digital controller is actually implemented on a DSP and is connected to a DC-DC converter. Experimental studies demonstrate that this type digital controller can satisfy given specifications.

  • PDF

A 100MHz DC-DC Converter Using Integrated Inductor and Capacitor as a Power Module for SoC Power Management (SoC 전원 관리를 위한 인덕터와 커패시터 내장형 100MHz DC-DC 부스트 변환기)

  • Lee, Min-Woo;Kim, Hyoung-Joong;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.31-40
    • /
    • 2009
  • This paper presents a design of a high performance DC-DC boost converter as a power module for SOC designs. It applied to this chip that reduced inductor and capacitor for integrating on a chip, and it operates with a switching frequency of 100MHz. It has reliability and stability in high switching frequency. The controller of DC-DC boost converter is designed by voltage-mode control method and compensated properly. The designed DC-DC converter is fabricated with the 0.18${\mu}m$ standard CMOS technology with a thick-gate oxide option. The overall die size is 8.14$mm^2$, and controller size is 1.15$mm^2$. The converter has the maximum efficiency over 76% for the output voltage of 4V and load current larger 300mA. The load regulation is 0.012% (0.5mV) for the load current change of 100mA.

400mA Current-Mode DC-DC Converter for Mobile Multimedia Application (휴대용 멀티미디어 기기를 위한 400mA급 전류 방식 DC-DC 컨버터)

  • Heo, Dong-Hun;Nam, Hyun-Seok;Lee, Min-Woo;Ahn, Young-Kook;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.24-31
    • /
    • 2008
  • Power converters are becoming an essential block in modem mobile multimedia application. This paper presents a high performance DC-DC buck converter for mobile applications. Controller of DC-DC buck converter is designed by current-mode control method. An current-mode DC-DC converter is implemented in a standard $0.18{\mu}m$ CMOS process, and the overall die size was $1.2mm^2$. The peak efficiency was 86 % with a switching frequency of $1\sim1.5MHz$ and a maximum load current of 400mA.

Thermoelectric Energy Harvesting Circuit Using DC-DC Boost Converter (DC-DC 부스트 변환기를 이용한 열전에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.284-293
    • /
    • 2013
  • This paper describes a DC-DC boost converter for thermoelectric energy harvesting. The designed converter boosts the VDD through a start-up block from a low-output voltage of a thermoelectric device and the boosted VDD is used to operate the internal control block. When the VDD reaches a predefined value, a detector circuit makes the start-up block turn off to minimize current consumption. The final boosted VOUT is achieved by alternately operating the DC-DC converter for VDD and the main DC-DC converter for VOUT according to the comparator outputs. Simulation results shows that the designed converter generates 2.65V from an input voltage of 200mV and its maximum power efficiency is 63%. The area of the chip designed using a 0.35um CMOS process is $1.3mm{\times}0.7mm$ including pads.

A Study on ZVCS DC-DC Chopper by using Partial Resonant Method (부분공진 기법이 적용된 ZVCS DC-DC 초퍼에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 2008
  • Recently, DC-DC choppers must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of chopper are subjected to high switching power losses and switching stresses. As a result of these, the chopper system bring on a low power efficiency. To improved these, this paper is studied on a new DC-DC chopper of high efficiency operated with soft switching(that is, zero current switching and zero voltage switching, ZVCS), of semiconductor switches using in chopper. The soft switching operation is applied to a partial resonant method that the switches operate at zero current of inductor and zero voltage of capacitor in resonant circuit. And the partial resonant circuit makes use of a inductor using step-up and a snubber capacitor, the circuit topology of chopper is simple. Some simulative results on computer and experimental results confirm the validity of analytical results of the DC-DC chopper.

  • PDF

A Sensing Scheme Utilizing Current-Mode Comparison for On-Chip DC-DC Converter (온칩 DC-DC 변환기를 위한 전류 비교 방식의 센서)

  • Kim, Hyung-Il;Song, Ha-Sun;Kim, Bum-Soo;Kim, Dae-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.86-90
    • /
    • 2007
  • An efficient sensing scheme applicable to DC-DC converters is proposed. The output voltage of the DC-DC converter is fed back and converted to a current signal at the input terminal of the sensor to decide if it is in the tolerable range. The comparison is accomplished by a current push-pull action. With the embedded reference current in the sensor realized from the reference voltage. The advantages of the scheme lie in the fairly accurate and efficient implementation in terms of power consumption and chip size overhead compared with conventional voltage-mode schemes as the major parameter in converting voltage to current is determined by (W/L) aspect ratio of the core transistors. In this paper, a DC-DC converter of 5V output from battery range of 2.2V${\sim}$3.6V adopting the proposed sensing scheme is implemented in a 0.35um CMOS process to prove the validity of the scheme.

Design of DC-DC Converter for Low-Voltage EEPROM IPs (저전압 EEPROM IP용 DC-DC Converter 설계)

  • Jang, Ji-Hye;Choi, In-Hwa;Park, Young-Bae;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.852-855
    • /
    • 2012
  • A DC-DC converter for EEPROM IPs which perfom erasing by the FN (Fowler-Nordheim) tunneling and programming by the band-to-band tunneling is designed in this paper. For the DC-DC converter for EEPROM IPs using a low voltage of $1.5V{\pm}10%$ as the logic voltage, a scheme of using VRD (Read Voltage) instead of VDD is proposed to reduce the pumping stages and pumping capacitances of its charge pump circuit. VRD ($=3.1V{\pm}0.1V$) is a regulated voltage by a voltage regulator using an external voltage of 5V. The designed DC-DC converter outputs VPP (=8V) and VNN (=-8V) in the write mode.

  • PDF

Switch Design of TM Type SIDO DC-DC Buck Converter for Camera Module (카메라 모듈용 TM 방식 SIDO DC-DC 벅 컨버터의 스위치 설계)

  • Choi, Hun;Lee, Dong-Keon;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • In this paper, a switch sizing method is proposed in order to prevent the cross-regulation in the TM type SIDO DC-DC buck converter. In TM type SIDO DC-DC buck converter, a DCM operation is required. In the DCM operation, the inductor peak current is larger than that in the CCM. Because of the larger inductor peak current and the added switch resistance, the voltage drop is increased, resulting in possible cross-regulation. To solve this problem, the switch resistance must be considered in sizing the switch. To simplify the calculation of the resistance, the inductor current was replaced by the average load current. Using the proposed method, TM type SIDO DC-DC buck converter for camera module was designed to provide two independent supply voltage(2.8 V and 1.8 V). The designed circuit was fabricated in a standard $0.35{\mu}m$ CMOS process. At a switching frequency of 1 MHz and a load current of 200 mA, a power effciency of 80.7% was achieved.

A Study on the LCC Type High Frequency DC/DC Converter for Contactless Power Supply System (비접촉 전원장치에 적용한 LCC형 고주파 공진 DC/DC 컨버터에 관한 연구)

  • Kim, Dong-Hee;Hwang, Gye-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.55-64
    • /
    • 2007
  • This paper represents characteristics and design example of series loaded LCC type high frequency resonant DC-DC converter with variable parallel capacitor in the secondary side of inductive power transformer. In this converter, ZVS(zero voltage switching) technique is applied to reduce turn-off switching losses, and the applied converter used the PFM switching pattern to control output voltage. The operating characteristics of the proposed converter is analyzed using nomalized parameter such as switching frequency and load factor with varing the secondary parallel resonant capacitor. The results of analysis show the operating characteristics and design method of the proposed converter using characteristic values. And the proposed converter can be applied for the contactless power supply with linear transfer system such as dean room facilities of semiconductor and Flat Panel Display.

DC Characteristics Analysis of Various AC loads for Hybrid Distribution (하이브리드 급전을 위한 다양한 가정용 교류부하의 직류특성연구)

  • Lee, Young-Jin;Han, Dong-Ha;Choi, Jung-Muk;Jeong, Byong-Hwan;Kim, Dong-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.207-217
    • /
    • 2010
  • Recently, the use of DC power increased due to the increased use of digital load. Power factor of input current decrease and input current harmonics increase, and conversion loss which is occurred in the AC / DC converter is a problem to provide the proper DC voltage to the device equipped with an internal AC / DC converter. Hybrid system supplies the AC power and DC power to AC load (motor load and the transformer load) and DC loads (computers, TV, LED fluorescent light) at the same time it supplies the renewable energy and utility energy taken power from Utility to user for improving the efficiency and renewable energy improvements in ease of use. This paper studies DC characteristics of traditional AC load for Hybrid distributions.