• Title/Summary/Keyword: DC/DC

Search Result 13,292, Processing Time 0.052 seconds

Growth and Physiological Characteristics of Five Common Foliage Plant Species Grown under the Influence of Static Magnetic Field (정자기장 처리에 따른 실내 관엽식물의 생육 및 생리적 특성 변화)

  • Lee, Seong Han;Woo, Su Young;Kwak, Myung Ja
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The present study aimed to investigate the effect of static magnetic field (SMF) on the growth and physiological characteristics of common indoor plant species. Five foliage plant species, Spathiphyllum spp., Ardisia pusilla DC., Syngonium podophyllum, Peperomia pereskiifolia, and Pilea cadierei were potted into plastic pot equipped with round type anisotropic sintered NdFeB permanent magnet inside the pot. The surface magnetic flux density of each magnet was 3,500 G. After 6 months of growth period, the biomass accumulations of Spathiphyllum, A. pusilla, and P. cadierei under SMF were statistically higher than those of controls. Tissue water content also increased under the influence of SMF in most species. The photosynthetic rate of Spathiphyllum under SMF significantly increased but other species showed no significant difference compared with control. Although there was no significant increase in the photosynthetic rates of A. pusilla, and P. cadierei, they showed remarkable increase in total fresh weight under SMF. This suggests that the demand of assimilates for normal metabolism could be decreased under magnetic influence and thereby biomass accumulation could be more favored. But this is not always true for all plant species because P. pereskiifolia in this experiment, showed no changes in both photosynthetic rate and biomass accumulation. Leaf nitrogen and chlorophyll contents were enhanced significantly in most plant species under influence of SMF. Chlorophyll a/b ratio also increased by SMF. Although there might be a limitation depending on plant species, these results suggest that long-term exposure to SMF might allow plant to have an enhanced acclimation capacity against environmental fluctuations and optimal application of SMF could increase the practical use of indoor plants such as an attempt to improve indoor air quality.

Immunohistochemical Analysis for the Expression of DR5 TRAIL Receptor and p53 in Non-small Cell Lung Cancer (비소세포폐암에서 DR5 TRAIL 수용체와 p53에 관한 면역조직화학적 분석)

  • Lee, Kye-Young;Lee, Jung-Hyun;Kim, Sun-Jong;Yoo, Kwang-Ha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.4
    • /
    • pp.278-284
    • /
    • 2008
  • Background: TRAIL is a promising anticancer agent which induces selective tumor cell death due to a unique receptor system that includes death receptors and decoy receptors. DR5 TRAIL receptor is an originally identified p53-regulated death receptor gene that was induced, by doxorubicine, only in cells with a wild-type p53 status. We investigated that focused on the correlation between the DR5 and p53 expressions in non-small cell lung cancer (NSCLC). Methods: Immunohistochemical analysis, with using avidin-biotinylated horseradish peroxidase complex, was carried out in 89 surgically resected NSCLC formalin-fixed paraffin-embedded tissue sections. As primary antibodies, we used anti-DR5 polyclonal antibody and anti-p53 monoclonal antibody. A negative control was processed with each slide. The positive tumor cells were quantified twice and these values were expressed as percentage of the total number of tumor cells, and the intensity of immunostaining was expressed. The analysis of the DR5 expression was done separately in tumor area and in a nearby region of normal tissue. Results: The DR5 expression was high in the bronchial epithelium (89% of cases) but this was almost absent in type I & II pneumocytes, lymphocytes and smooth muscle cells. High DR5 expression rate in tumor was seen in 28% (15/53) of squamous cell carcinomas, in 47% (15/32) of adenocarcinomas and, in 50% (2/4) of large cell carcinomas. The DR5 expression did not show any statistical significance relationship with the T stage, N stage, or survival. However, the DR5 expression showed significant inverse correlation with the p53 expression. (p< 0.01). Conclusion: We demonstrated that the DR5 expression in NSCLC via immunohistochemical analysis is relatively tumor-specific except for that in the normal bronchial epithelium and it is significantly dependent on the p53 status. This might be in vivo evidence for the significance of the DR5 gene as a p53 downstream gene.

ANTIMICROBIAL ACTIVITY OF ARTEMISIA SPECIES AGAINST CLINICALLY ISOLATED STREPTOCOCCUS MUTANS (임상 분리된 Streptococcus mutans에 대한 Artemisia species의 항균 활성도)

  • Seo, Jung-Ah;Kim, Jae-Gon;Kim, Mi-Ah;Baik, Byeong-Ju;Yang, Yeon-Mi;Jeong, Jin-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.4
    • /
    • pp.505-513
    • /
    • 2009
  • Streptococcus mutans plays a major role in the formation of dental plaque and it is considered one of the important pathogens in the development of dental caries. Established dental plaque can be more resistant to antimicrobial agents and offers nutrient rich and relatively stable cariogenic conditions for bacteria. Thus bacteria growing in dental plaque have strong resistance to antimicrobial agents and they are not removed easily by the flow of saliva. Many researchers have been performed using natural materials, especially herbal extracts to prevent dental plaque. However, the strains of mutans streptococci used in the researches were not from Koreans. Therefore, it would be necessary to evaluate the antimicrobial activity of herbal extracts against clinical isolates of Streptococcus mutans isolated from saliva of Koreans living in Jeollabuk-do. For this study four clinical isolates were isolated from saliva samples of seventeen Korean people to investigate whether essential oils of Artemisia spp. have antimicrobial activity against them including four reference strains of Streptococcus mutans. Minimum inhibitory concentrations, Minimum bactericidal concentrations and time kill studies were performed and the results showed that Artemisia lavandulaefolia DC, Artemisia scoparia, and Artemisia capillaries have antimicrobial activity against the Streptococcus mutans clinical isolates and reference strains.

  • PDF

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

Phellinus linteus Extract Regulates Macrophage Polarization in Human THP-1 Cells (상황버섯 추출물의 인간 유래 THP-1 단핵구 세포주의 분극화 조절)

  • Lee, Sang-Yull;Park, Sul-Gi;Yu, Sun-Nyoung;Kim, Ji-Won;Hwang, You-Lim;Kim, Dong-Seob;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.113-121
    • /
    • 2020
  • Macrophages are initiators for regulating a host's defenses to eliminate pathogens and trigger tissue repair. Macrophages are classified into two types: classically (M1) activated macrophages and alternatively (M2) activated macrophages. M1-phenotype macrophages directly or indirectly kill infectious organisms and tumor cells via pro-inflammatory responses, whereas M2-phenotype macrophages remodel wounded tissue through anti-inflammatory responses. In this paper, we investigated how Phellinus linteus hot water extract passed from Diaion HP-20 resin (PLEP) regulates polarization of M1-like or M2-like macrophages in human THP-1 cells. PLEP did not have cytotoxicity at a high concentration of 300 ㎍/ml. We observed morphological alteration of the THP-1 cells, which are stimulated by PLEP, LPS/INF-γ (M1 stimulators) or IL-4/IL13 (M2 stimulators). PLEP exposure induced morphology contiguous with LPS/INF-γ. qPCR was also performed to determine whether PLEP influences M1 or M2 polarization-related genes. M1-phenotype macrophage-specific genes, such as TNF-α, IL-1β, IL-6, IL-8, CXCL10 and CCR7, were enhanced by PLEP in a dose-dependent manner similar to LPS/INF-γ. Conversely, M2-phenotype-specific genes, such as MRC-1, DC-SIGN, CCL17 and CCL22, were suppressed by PLEP. PLEP also significantly up-regulated secretory inflammation cytokines related to M1 polarization of macrophages, including TNFα, IL-1β and IL-6, which was similar to the gene expression. Further, MAPK and NF-κB signaling were increased by treatment with PLEP, resulting in enhancement of cytokine secretion. PLEP might therefore be used as a promising booster of pro-inflammatory responses through M1 polarization of human THP-1 cells.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Preparation of Polymer Gel Electrolyte for EDLCs using P(VdF-co-HFP)/PVP (P(VdF-co-HFP)/PVP를 이용한 EDLC용 고분자 겔 전해질의 제조)

  • Jung, Hyun-Chul;Jang, In-Young;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2006
  • Porous polymer gel electrolytes (PGEs) based on poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) as a polymer matrix and polyvinylpyrolidone (PVP) as a pore-forming agent were prepared and electrochemical properties were investigated for an electric double layer capacitor (EDLC) in order to increase a permeability of an electrolyte into the PGE. Propylene carbonate (PC) and ethylene carbonate (EC) as plasticizers, and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a supporting salt for the PGE were used. EDLC unit cells were assembled with the PGE and electrode comprising BP-20 and MSP-20 as activated carbon powders, Super P as a conducting agent, and P(VdF-co-HFP)/PVP as a mixed binder. Ion conductivity of PGEs increased with an increased PVP content and was the best at 7 wt% PVP, whereas electrochemical characteristics such as AC-ESR of unit cell were better in 3 wt%. And electrochemical characteristics of the unit cell with PGE were the best at a 33 : 33 weight ratio of PC to EC. Specific capacitance of a mixed plasticizer system of PE and EC was higher than that of pure PC. Ion conductivity of PGEs with a film thickness of $20{\mu}m$ was higher, but electrochemical characteristics of unit cells were higher for a $50{\mu}m$ membrane thickness. Also, the unit cell has shown the highest capacitance of 31.41 F/g and more stable electrochemical performance when PGE and electrode were hot pressed. Consequently, the optimum composition ratio of PGE for EDLCs was 23 : 66 : 11 wt% such as P(VdF-co-HFP) : PVP = 20 : 3 wt% and PC : EC = 44 : 22 wt%. In this case, $3.17{\times}10^{-3}S/cm$ of ion conductivity was achieved at the $50{\mu}m$ thickness of PGE for EDLCs. And the electrochemical characteristics of unit cells were $2.69{\Omega}$ of DC-ESR, 28 F/g of specific capacitance, and 100% of coulombic efficiency.

Antifungal Activity of Crude Extract Compound from Rhus verniciflua Against Anthracnose Fungi (Collectotrichum spp.) of Red-Pepper (고추 탄저병균에 대한 옻나무 추출물의 항진균 효과)

  • Song, Chi-Hyoun;Chung, Jong-Bae;Jeong, Byoung-Ryong;Park, Se-Young;Lee, Yong-Se
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.60-67
    • /
    • 2012
  • BACKGROUND: Anthracnose disease caused by Collectotrichum spp. is one of the most important worldwide devastating diseases in red pepper plants. Fungicides using plant extracts have several advantages, compared to synthetic chemical fungicides, because they are naturally occurring compounds, are usually safe for agricultural environment and are used for producing highly valuable agricultural products. Efforts for seeking an anti-fungal activities using naturally occurring compounds were mostly conducted from medicinal plant extracts. Sap of Rhus verniciflus was known to have healing effects on several human diseases. Recently, the extracts of Rhus verniciflus were actively tested for anti-cancer, anti-oxidative, and anti-fungal effects. In this study, the extract of Rhus verniciflus was tested for anti-fungal activity against Colletotrichum spp., which cause anthracnose in red-pepper. METHODS AND RESULTS: After neutralizing extracts of Rhus verniciflus (urushiol contents 70%) with autoclave, the crude extracts were used to investigate inhibitory effects for mycelial growth and spore germination of Colletotrichum spp. on PDA media. The mycelial growth and spore germination of Colletotrichum spp. were inhibited 18-39% and over 50% in response to crude extract of R. verniciflus (1.0 mg/mL). After spraying the extracts at the same concentrations above and then artificially inoculating Colletotrichum spp. on blue and red-pepper fruits, in vitro inhibition effects were examined. At 1.0 mg/mL, the crude extract of R. verniciflus showed inhibition activity in anthracnose incidence on blue- and red-pepper as 68.1-75.0%, through a artificial inoculation of Colletotrichum spp. in a laboratory. For in vivo inhibitory effects, the extracts (1.0, 0.1, and 0.01 mg/mL) were treated on red-pepper plants grown in green house 3 times at the interval of 1 week. Then inhibitory effects were determined by counting diseased fruits at 1 week after final treatment. The incidence of anthracnose was inhibited over 60% in the greenhouse by treatment of crude extract of R. verniciflus (1.0 mg/mL). CONCLUSION(s): Extracts of Rhus verniciflus were shown to have inhibitory effects on mycelial growth, spore germination of Colletotrichum spp. in vitro and on occurrence of anthracnose on pepper fruit in green house.

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.