• 제목/요약/키워드: DC/AC converters

검색결과 265건 처리시간 0.023초

새로운 가상 임피던스 선정기법 기반의 적응 드룹을 이용한 직류배전용 AC/DC 컨버터의 병렬운전 (Novel Adaptive Virtual Impedance-based Droop Control for Parallel Operation of AC/DC Converter for DC Distribution)

  • 이윤성;강경민;최봉연;김미나;이훈;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.328-329
    • /
    • 2020
  • The AC/DC converter, which connects the AC grid to the DC grid in the microgrid, is a critical component in power sharing and stable operation. Sometimes the AC/DC converters are connected in parallel to increase the transmission and reception capacity. When connected in parallel, circulating current is generated due to line impedance difference or sensor error. As a result of circulating current, there is deterioration and loss in particular PCS(Power Conversion System). In this paper, we propose droop control with novel adaptive virtual impedance for reducing circulating current. Feasibility of proposed algorithm is verified by PowerSIM simulation.

  • PDF

Power Electronic Converters for Fuel Cell Applications

  • Williamson S. S.;Emadi A.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.660-667
    • /
    • 2001
  • Power electronics plays an important role in providing an interface between fuel cells and loads. Furthermore, power electronic converters ensure that the power is reliably and efficiently delivered to the load in the required DC or AC form. In this paper, major types of fuel cells are presented. Basic structures, operating principles, and different applications of fuel cells are described. In addition, current status and future trends in the areas of power electronics for fuel cell applications are explained. A review of fuel cell power electronic system topologies and basic requirements are given as well.

  • PDF

Status Review of Power Electronic Converters for Fuel Cell Applications

  • Emadi, Ali;Williamson, Sheldon S.
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.133-144
    • /
    • 2001
  • Power electronics plays an important role in providing an interface between fuel cells and loads. Furthermore, power electronic converters ensure that the power is reliably and efficiently delivered to the load in the required DC or AC form. In this paper, major types of fuel cells are presented. Basic structures, operating principles, and different applications of fuel cells are described. In addition, current status and future trends in the areas of power electronics for fuel cells are described. In addition, current statue and future trends in the areas of power electronics for fuel cell applications are explained. A review of fuel cell power electronic system topologies and basic requirements are given as well.

  • PDF

Premium Power Quality Using Combination of Microturbine Unit and DC Distribution System

  • Noroozian, Reza;Abedi, Mehrdad;Gharehpetian, Gevorg
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.103-115
    • /
    • 2010
  • This paper discusses a DC distribution system which has been supplied by external AC systems as well as local microturbine distributed generation system in order to demonstrate an overall solution to power quality issue. Based on the dynamic model of the converter, a design procedure has been presented. In this paper, the power flow control in DC distribution system has been achieved by network converters. A suitable control strategy for these converters has been proposed, too. They have DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control system has been proposed for MT converter. Several case studies have been studied and the simulation results show that DC distribution system including microturbine unit can provide the premium power quality using proposed methods.

백열전구 대체용 7w급 LED 램프의 드라이버 설계 (Design of the Driver of 7W Class LED Lamps as a Substitute for Incandescent Lamps)

  • 박영산;배철오
    • 해양환경안전학회지
    • /
    • 제16권2호
    • /
    • pp.235-240
    • /
    • 2010
  • 백열전구를 대체하기위한 친환경 에너지 절약형 7w급 LED 램프의 구동을 위한 전원장치를 설계하였다. LED 램프는 칩 LED를 여러개 직 병렬로 연결하여 사용하게 되므로 적합한 직류 전압과 전류를 공급하여야 한다. 그런데 LED 램프는 상용 AC 220V 전원에 직접 연결해 사용하게 되므로 드라이버에는 전압제어와 전류제어가 포함된 AC/DC, DC/DC 전력변환기가 반드시 필요하게 된다. 따라서 본 논문에서는 램프의 LED 열에 따라 출력전압과 전류제어가 가능하며 변압기가 없는 간단한 구조의 LED 램프 드라이버를 설계하였다.

Zigbee통신을 이용한 전력변환기기의 DC Bus 커패시터의 온라인 원격 고장진단 시스템 (On-line Remote Diagnosis System for DC Bus Capacitor of Power Converters Using Zigbee Communication)

  • 정완섭;손진근
    • 전기학회논문지P
    • /
    • 제64권1호
    • /
    • pp.29-34
    • /
    • 2015
  • DC bus electrolytic capacitors are used in variety of equipments as smoothing element of the power converters because it has high capacitance for its size and low price. It is responsible for frequent breakdowns of many static converters and inverter drive systems. Therefore it is important to diagnosis monitoring the condition of an electrolytic capacitor in real-time to predict the failure of power converter. In this paper, the on-line remote diagnosis monitoring system for DC BUS electrolytic capacitors of power converter using low-cost type Zigbee communication modules is developed. To estimate the health status of the capacitor, the equivalent series resistor(ESR) of the component has to be determined. The capacitor ESR is estimated by using RMS computation using AC coupling method of DC link ripple voltage/current. The Zigbee communication-based experimental results show that the proposed remote DC capacitor diagnosis monitoring system can be applied to DC/DC converter and UPS successfully.

직류측에 Commutation 회로를 갖는 영전압 스위칭 PWM 인버터 (New DC/AC Soft Switched PWM Converter Having a DC-Link Commutation Circuit)

  • 정진홍;박선순;구태홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1158-1160
    • /
    • 1992
  • A new dc/ac soft switched PWM convert having a dc-link commutation circuit is proposed. The commutation circuit implemented by utilizing a series resonant circuit while preparing for zero voltage switching of primary inverter. The converter provides both variable pulse width and position which is fundamentally different than converters. In this paper, the operating principles, design and control considerations analysis of a such a soft switched converter is analyzed.

  • PDF

Ripple Analysis and Control of Electric Multiple Unit Traction Drives under a Fluctuating DC Link Voltage

  • Diao, Li-Jun;Dong, Kan;Yin, Shao-Bo;Tang, Jing;Chen, Jie
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1851-1860
    • /
    • 2016
  • The traction motors in electric multiple unit (EMU) trains are powered by AC-DC-AC converters, and the DC link voltage is generated by single phase PWM converters, with a fluctuation component under twice the frequency of the input catenary AC grid, which causes fluctuations in the motor torque and current. Traditionally, heavy and low-efficiency hardware LC resonant filters parallel in the DC side are adopted to reduce the ripple effect. In this paper, an analytical model of the ripple phenomenon is derived and analyzed in the frequency domain, and a ripple control scheme compensating the slip frequency of rotor vector control systems without a hardware filter is applied to reduce the torque and current ripple amplitude. Then a relatively simple discretization method is chosen to discretize the algorithm with a high discrete accuracy. Simulation and experimental results validate the proposed ripple control strategy.

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

에너지 효율분석을 통한 DC 마이크로그리드의 타당성 검토 (A Feasibility Study on DC Microgrids Considering Energy Efficiency)

  • 유철희;정일엽;홍성수;채우규;김주용
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1674-1683
    • /
    • 2011
  • More than 80% of electric loads need DC electricity rather than AC at the moment. If DC power could be supplied directly to the terminal loads, power conversion stages including rectifiers, converters, and power adapters can be reduced or simplified. Therefore, DC microgrids may be able to improve energy efficiency of power distribution systems. In addition, DC microgrids can increase the penetration level of renewable energy resources because many renewable energy resources such as solar photovoltaic(PV) generators, fuel cells, and batteries generate electric power in the form of DC power. The integration of the DC generators to AC electric power systems requires the power conversion circuits that may cause additional energy loss. This paper discusses the capability and feasibility of DC microgrids with regard to energy efficiency analysis through detailed dynamic simulation of DC and AC microgrids. The dynamic simulation models of DC and AC microgrids based on the Microgrid Test System in KEPCO Research Institute are described in detail. Through simulation studies on various conditions, this paper compares the energy efficiency and advantages of DC and AC microgrids.