• Title/Summary/Keyword: DBR layer

Search Result 16, Processing Time 0.024 seconds

Preparation and Optical Characterization of DBR/Host Dual Porous Silicon Containing DBR and Host Structures (DBR 다공성 실리콘과 Host 다공성 실리콘으로 이루어진 이중 다공성 실리콘의 제조와 광학적 특성)

  • Choi, Tae-Eun;Yang, Jinseok;Um, Sungyong;Jin, Sunghoon;Cho, Bomin;Cho, Sungdong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.78-83
    • /
    • 2010
  • DBR/Host dual porous silicons containing DBR and host structure were prepared and their optical properties were characterized using Ocean Optics spectrometer. In this dual porous silicon, single porous silicon layer was used as host layer for possible biomolecule and drug materials and DBR porous silicon layer was used for signal transduction due to the recognition of molecules. Optical reflection spectrum of dual porous silicon displayed only DBR reflection but Fabry-Perot fringe pattern. DBR reflection band of dual porous silicon shifted to the shorter wavelength as the etching time of host layer increased. Cross-sectional FE-SEM image of dual porous silicon displayed a thickness of about 20 micrometer for DBR porous silicon layer. Developed etching technology could be useful to prepare DBR porous silicon which exhibited specific reflection resonance at the required wavelength and to provide an label-free biosensors and drug delivery materials.

Fabrication and lasing characteristics of tunable Butt-coupled DBR-LD (Butt-coupled DBR-LD제작 및 동작특성)

  • 오수환;이철욱;김기수;이지면;고현성;박상기;박문호
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.327-330
    • /
    • 2003
  • We present the fabrication and measured performance of a wavelength tunable Butt coupled DBR-LD. An average coupling efficiency between active layer and passive waveguide layer was measured over 85%per facet, and the average threshold current was 21 ㎃ for the waveguide integrated DBR laser. High output power of Butt coupled DBR-LD was obtained over 25 ㎽. As high as 25 ㎽ of output power was achieved by the butt coupled method. The maximum wavelength tuning range is about 7.4 nm, and the side mode suppression ratio was more than 40 ㏈ using 1.3 ${\mu}{\textrm}{m}$ InGaAsP waveguide layer.

Reflectance spectrum properties of DBR and microcavity porous silicon (Distributed Bragg Reflector, Microcavity 구조를 갖는 다공질규소의 반사율 스펙트럼)

  • Kim, Young-You;Kim, Han-Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.293-297
    • /
    • 2009
  • In this paper, we made three kinds of porous silicon samples (single layer, distributed Bragg reflector, and microcavity) by electrochemical etching p-type silicon substrate. And then, we investigated their reflectance spectrum properties. We found that the number of fringe patterns and the maximum reflectivity of porous silicon multilayer increased compared with a porous silicon sinlge layer. In addition, we can observe that the DBR (distributed Bragg reflector) porous silicon has a full-width at half-maximum about 33 nm which is narrower than the porous silicon single layer and porous silicon microcavity.

Improved Uniformity of GaAs/AlGaAs DBR Using the Digital Alloy AlGaAs Layer (디지털 합금 AlGaAs층을 이용하여 제작된 GaAs/AlGaAs DBR의 균일도 향상)

  • Cho, N.K.;Song, J.D.;Choi, W.J.;Lee, J.I.;Jeon, Heon-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.280-286
    • /
    • 2006
  • A distributed Bragg reflector (DBR) for the application of $1.3{\mu}m$ vertical cavity surface emitting laser (VCSEL) has grown by digital-alloy AlGaAs layer using the molecular beam epitaxy (MBE) method. The measured reflection spectra of the digital-alloy AlGaAs/GaAs DBR have uniformity in 0.35% over the 1/4 of 3-inch wafer. Furthermore, the TEM image showed that the composition and the thickness of the digital-alloy AlGaAs layer in AlGaAs/GaAs DBR was not affected by the temperature distribution over the wafer whole surface. Therefore, the digital-alloy AlGaAs/GaAs DBR can be used to get higher yield of VCSEL with the active medium of InAs quantum dots whose gain is inhomogeneously broadened.

Detection of Voletile Organic Compounds by Using DBR Porous Silicon (DBR 다공성 실리콘을 이용한 휘발성 유기화합물의 감지)

  • Park, Cheol Young
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • Recently, number of studies for porous silicon (PSi) have been investigated by many researchers. Multistructured porous silicon such as a distributed Bragg reflector (DBR) PSi, has been a topic of interest, because of its unique optical properties. DBR PSi were prepared by using an electrochemical etch of $P{^+}{^+}$-type silicon wafer with resistivity between 0.1 and $10m{\Omega}cm$. The electrochemical etch with square wave current density results in two different refractive indices in the porous layer. In this work, DBR porous silicon chips for a simple and portable organic vapor-sensing device have fabricated. The optical characteristics of DBR PSi have been investigated. DBR porous silicon have been characterized by FT-IR and Ocean optics 2000 spectrometer. The device used DBR PSi chip has been demonstrated as an excellent gas sensor, showing a great senstivity to organic vapor at room temperature.

  • PDF

Optical Characterization of DBR Porous Silicon by Changing of Applied Current Density (전류세기의 변화에 따른 DBR 다공성 실리콘의 광학적 특성)

  • Choi, Tae-Eun;Park, Jaehyun
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.82-85
    • /
    • 2009
  • Distributed Bragg reflector (DBR) porous silicon (PSi) was generated by an electrochemical etching a bragg structure into a silicon wafer through electrode current in aqueous ethanolic HF solution. DBR PSi exhibiting unique reflectivity was successfully obtained by an electrochemical etching of silicon wafer using square current waveform. The multilayered photonic crystals of DBR PSi exhibited the reflection of a specific wavelength with high reflectivity in the optical reflectivity spectrum. In this work, we have developed a method to create refractive index in Si substrate through intensity of an electric current. The electrochemical process allows for precise control of the structural properties of DBR PSi such as thickness of the porous layer, porosity, and average pore diameter. The number of reflection peak of DBR PSi and its pore size increased as the intensity of electric current increased. This might be a demonstration for the fabrication of specific reflectors or filters.

  • PDF

Design Optimization for High Efficiency Distributed Bragg Reflectors through Simulation Methodology (시뮬레이션을 이용한 고효율 분산 브래그 반사경 최적화 설계 및 특성)

  • Kim, Kwan-Do
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.189-192
    • /
    • 2018
  • This study focused on the development of simulation methodology and design optimization for the DBR(Distributed Bragg Reflectors) structures, which are commonly used in manufacturing optical films and the key components of LED chip and LCD inspection equipments. From the multi-layer simulation, the following results are obtained. First, the wavelength(nm) vs. reflectance(%) can be calculated in the DBR structures that $TiO_2$ and $SiO_2$ thin films are stacked alternately. As a results, it is suggested that highly efficient DBR structures can be designed and manufactured using simulation methodology.

Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor (비분산적외선 CO2 센서를 위한 DBR기반의 패브리 페로-필터 설계 및 성능 연구)

  • Do, Nam Gon;Lee, Junyeop;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.250-254
    • /
    • 2021
  • A highly sensitive and selective non-dispersive infrared (NDIR) carbon dioxide gas sensor requires achieving high transmittance and narrow full width at half maximum (FWHM), which depends on the interface of the optical filter for precise measurement of carbon dioxide concentration. This paper presents the design, simulation, and fabrication of a Fabry-Perot filter based on a distributed Bragg reflector (DBR) for a low-cost NDIR carbon dioxide sensor. The Fabry-Perot filter consists of upper and lower DBR pairs, which comprise multilayered stacks of alternating high- and low-index thin films, and a cavity layer for the resonance of incident light. As the number of DBR pairs inside the reflector increases, the FWHM of the transmitted light becomes narrower, but the transmittance of light decreases substantially. Therefore, it is essential to analyze the relationship between the FWHM and transmittance according to the number of DBR pairs. The DBR is made of silicon and silicon dioxide by RF magnetron sputtering on a glass wafer. After the optimal conditions based on simulation results were realized, the DBR exhibited a light transmittance of 38.5% at 4.26 ㎛ and an FWHM of 158 nm. The improved results substantiate the advantages of the low-cost and minimized process compared to expensive commercial filters.

Design of 850 nm Vertical-Cavity Surface-Emitting Lasers by Using a Transfer Matrix Method (전달 행렬 방법을 이용한 850 nm수직 공진기 레이저 구조의 최적설계)

  • Kim Tae-Yong;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2004
  • In comparison with edge-emitting lasers(EELs), predicting the output power and slope efficiency of Vertical-Cavity Surface-Emitting Lasers(VCSELs) is very difficult due to the absorption loss in DBR layers. However, by using transfer matrix method(TMM), we've made possible to calculate such parameters of multi-layer structures like VCSELs. In this paper, we've calculated the threshold gain, threshold current and slope efficiency through the methodology based on TMM. Also TMM is the way of customizing the VCSEL structure for the desired threshold current and slope efficiency by changing the number of DBR mirror layers.

ALD-based Functional Bragg Reflector Structure to Block Harmful Ultraviolet Rays that Affect the Reliability of Organic Devices (유기소자의 신뢰성에 영향을 주는 유해 자외선을 차단하기 위한 ALD기반 기능성 브래그반사경 구조)

  • Hyeun Woo Kim;Hyeong Jun Lee;Seungmi Jang;Hyeongjun Yun;Dokyun Lee;Yongmin Lee;Sangyeon Park;Jihoon Jung;Seokjun Lim;Jeong Hyun Kwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.103-107
    • /
    • 2023
  • To solve the reliability problem of organic devices that are often used outdoors, multifunctional gas barriers that block reactive gases such as moisture and oxygen and reflect harmful light such as ultraviolet rays are needed. In this study, ALD nanolaminate-based optically functional n-DBR was developed to overcome the poor gas permeability of polymer substrates and protect organic devices from harmful light. n-DBR not only achieved a WVTR of 8.76 × 10-6 g·m-2·day-1, but also showed a visible light transmittance of 94.3% and an ultraviolet ray blocking ability of 2.67%. In particular, n-DBR based on a nanolaminate structure maintained its permeability characteristics even in a high temperature and high humidity environment despite being used as a layer of Al2O3. This functional barrier Structure can not only be used as a functional encapsulation barrier for the reliability of organic devices, but can also be used as a tinting film for vehicles.

  • PDF