• Title/Summary/Keyword: DBR 다공성 실리콘

Search Result 6, Processing Time 0.015 seconds

DBR PSi/Polymer Composite Materials -Dual Photonic Characteristics (DBR 다공성 실리콘/고분자 Composite 재료-이중적 광학특성)

  • Park, Cheol-Young;Jang, Seung-Hyun;Kim, Ji-Hoon;Park, Jae-Hyun;Koh, Young-Dae;Kim, Sung-Jin;Ko, Young-Chun;Sohn, Hong-Lae
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.221-226
    • /
    • 2007
  • DBR (distributed Bragg reflectors) PSi (porous silicon) composite films displaying dual optical properties, both optical reflectivity and photoluminescence had been developed. DBR PSi samples were prepared by electrochemical etch of heavily doped $p^{++}-type$ silicon wafers (boron doped, polished on the <100> face, resistivity of $0.8-1.2m{\Omega}-cm$, Siltronix, Inc.). Free-standing DBR PSi films were treated with PMMA (polymethyl methacrylate) to produce flexible, stable composite materials in which the PSi matrix is covered with PMMA containing photoluminescent polysiloles. Optical characteristics of DBR PSi/polysilole-impregnated PMMA composite materials exhibit both their photonic reflectivity at 565 nm and photoluminescence at 510 nm, simultaneously. A possible application of this materials will be discussed.

Preparation and Optical Characterization of DBR/Host Dual Porous Silicon Containing DBR and Host Structures (DBR 다공성 실리콘과 Host 다공성 실리콘으로 이루어진 이중 다공성 실리콘의 제조와 광학적 특성)

  • Choi, Tae-Eun;Yang, Jinseok;Um, Sungyong;Jin, Sunghoon;Cho, Bomin;Cho, Sungdong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.78-83
    • /
    • 2010
  • DBR/Host dual porous silicons containing DBR and host structure were prepared and their optical properties were characterized using Ocean Optics spectrometer. In this dual porous silicon, single porous silicon layer was used as host layer for possible biomolecule and drug materials and DBR porous silicon layer was used for signal transduction due to the recognition of molecules. Optical reflection spectrum of dual porous silicon displayed only DBR reflection but Fabry-Perot fringe pattern. DBR reflection band of dual porous silicon shifted to the shorter wavelength as the etching time of host layer increased. Cross-sectional FE-SEM image of dual porous silicon displayed a thickness of about 20 micrometer for DBR porous silicon layer. Developed etching technology could be useful to prepare DBR porous silicon which exhibited specific reflection resonance at the required wavelength and to provide an label-free biosensors and drug delivery materials.

Detection of Voletile Organic Compounds by Using DBR Porous Silicon (DBR 다공성 실리콘을 이용한 휘발성 유기화합물의 감지)

  • Park, Cheol Young
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • Recently, number of studies for porous silicon (PSi) have been investigated by many researchers. Multistructured porous silicon such as a distributed Bragg reflector (DBR) PSi, has been a topic of interest, because of its unique optical properties. DBR PSi were prepared by using an electrochemical etch of $P{^+}{^+}$-type silicon wafer with resistivity between 0.1 and $10m{\Omega}cm$. The electrochemical etch with square wave current density results in two different refractive indices in the porous layer. In this work, DBR porous silicon chips for a simple and portable organic vapor-sensing device have fabricated. The optical characteristics of DBR PSi have been investigated. DBR porous silicon have been characterized by FT-IR and Ocean optics 2000 spectrometer. The device used DBR PSi chip has been demonstrated as an excellent gas sensor, showing a great senstivity to organic vapor at room temperature.

  • PDF

Optical Characterization of DBR Porous Silicon by Changing of Applied Current Density (전류세기의 변화에 따른 DBR 다공성 실리콘의 광학적 특성)

  • Choi, Tae-Eun;Park, Jaehyun
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.82-85
    • /
    • 2009
  • Distributed Bragg reflector (DBR) porous silicon (PSi) was generated by an electrochemical etching a bragg structure into a silicon wafer through electrode current in aqueous ethanolic HF solution. DBR PSi exhibiting unique reflectivity was successfully obtained by an electrochemical etching of silicon wafer using square current waveform. The multilayered photonic crystals of DBR PSi exhibited the reflection of a specific wavelength with high reflectivity in the optical reflectivity spectrum. In this work, we have developed a method to create refractive index in Si substrate through intensity of an electric current. The electrochemical process allows for precise control of the structural properties of DBR PSi such as thickness of the porous layer, porosity, and average pore diameter. The number of reflection peak of DBR PSi and its pore size increased as the intensity of electric current increased. This might be a demonstration for the fabrication of specific reflectors or filters.

  • PDF

1-D photonic crystals of free-standing DBR PSi for sensing and drug delivery applications (비고정화 된 일차원 광결정의 DBR 다공성 실리콘을 이용한 센서와 Drug Delivery로의 응용)

  • Koh, Young-Dae;Kim, Ji-Hoon;Park, Jong-Sun;Kim, Sung-Gi;Kim, Dong-Su;Cho, Sung-Dong;Sohn, Hong-Lae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.391-396
    • /
    • 2006
  • Free-standing multilayer distributed Bragg reflectors (DBR) porous silicon dielectric mirrors, prepared by electrochemical etching of crystalline silicon using square wave currents are treated with polystyrene to produce flexible, stable composite materials in which the porous silicon matrix is covered with caffeine-impregnated polystyrene. Optically encoded DBR PSi/polystyrene composite films retain the optical reflectivity. Optical characteristics of DBR PSi/polystyrene composite films are stable and robust for 2 hrs in a pH=7 aqueous buffer solution. The appearance of caffeine and change of DBR peak were simultaneously measured by UV-vis spectrometer and Ocean optics 2000 spectrometer, respectively.

Synthesis and Optically Characterization of Bragg Structure Porous Silicon (다층 다공성 실리콘의 합성과 그 광학적 특성 조사)

  • Kim, Sung Gi
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.45-49
    • /
    • 2009
  • Electrochemical etching of heavily doped p-type silicon wafers (boron doped, <100> orientation, resistivity; $0.8-1.2m{\Omega}/cm$) with different current density resulting two different refractive indices resulted in DBR (Distributed Bragg Reflectors) porous silicon, which exhibited strong in-plane anisotropy of refractive index (birefringence). Dielectric stacks of birefringent porous silicon acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in depth) variation of the refraction index. Optical characteristics of DBR porous silicon were investigated.

  • PDF