대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
/
pp.418-424
/
2002
Korean Fusion Reactor(KSTAR) system consists of a vacuum vessel, in-vessel components, cryostat, thermal shield, super-conducting magnets and magnet supporting structures. These systems are in the final stage of engineering design with the involvement of industrial manufacturers. The overall configuration and the detailed dimensions of the KSTAR structure have been determined and the first stage of manufacturing is progressing now. In this study, the fabrication and assembly sequence were evaluated in viewpoint of high strengthening joints and very high accuracy. Especially for this purpose, the special cleaning process and welding process were proposed for high strengthening austenitic stainless steel which shall be used at cryogenic temperature. The draft procedure qualification data for welding process are presented with precise welding data including special narrow groove design. For the cooling line attachment on the surface of inside wall of magnet structure case, Induction brazing technology is introduced with some special jigging system and some consumables.
The purpose of this study was to investigate the perceptions of the students about professionalism on the elementary teachers' science teaching through network analysis of keyword. For this study, questionnaires were conducted to elementary school students. The collected data were translated by coding and data cleaning. And then analyzed by Gephi 0.9.2 program as a tool of the network analysis. The results of this study were as follows: Top 5 words in betweenness centrality were 'smart, experiment, fun, various, and student understanding'. There was some difference of perceptions of students according to personal backgrounds(gender, grade and interest toward science class). Based on the result of this study, implications to improve elementary teachers' science teaching professionalism were suggested.
Purpose: The purpose of this study was to compare the dimension safety evaluation between a general ultrasonic cleaner and an ultrasonic cleaner equipped with UV-C (ultraviolet-C). Methods: An edentulous model was prepared. A denture base and an occlusal rim were fabricated, and scanning was performed. After scanning, a denture base and full arch artificial teeth were designed. The full arch artificial teeth were printed using a three-dimensional printer (n=10). The residual resin was washed with alcohol and then scanned (reference data). The printed specimens were classified and cleaned using a general ultrasonic cleaner (GU group) and an ultrasonic cleaner equipped with UV-C (UC group). After each washing, a rescan was performed (scan data). Reference data and scan data were superimposed using overlapping software. Data were statistically analyzed using the Mann-Whitney test (α=0.05). Results: In the deviation values of full arch artificial teeth, the GU group showed a high deviation of 18.02 ㎛ and the UC group showed a low deviation of 15.02 ㎛. The two groups demonstrated a statistically significant difference (p<0.05). Conclusion: Full arch artificial teeth prepared using photopolymerized resin were deformed according to the temperature of water generated in the ultrasonic cleaner. It is judged that there is no deformation according to the UV-C ultrasonic cleaner.
Maqsood Ali Solangi;Ghulam Ali Mallah;Shagufta Naz;Jamil Ahmed Chandio;Muhammad Bux Soomro
International Journal of Computer Science & Network Security
/
제23권9호
/
pp.95-99
/
2023
Recently Machine Learning has been considered as one of the active research areas of Computer Science. The various Artificial Intelligence techniques are used to solve the classification problems of environmental sciences, biological sciences, and medical sciences etc. Due to the heterogynous and malfunctioning weather sensors a considerable amount of noisy data with missing is generated, which is alarming situation for weather prediction stockholders. Filling of these missing values with proper method is really one of the significant problems. The data must be cleaned before applying prediction model to collect more precise & accurate results. In order to solve all above stated problems, this research proposes a novel weather forecasting system which consists upon two steps. The first step will prepare data by reducing the noise; whereas a decision model is constructed at second step using regression algorithm. The Confusion Matrix will be used to evaluation the proposed classifier.
본 연구는 대학생의 선호직업유형이 진로결정과정에서 확증편향과 취업불안에 미치는 영향을 분석하는 양적연구이다. 본 연구 설문조사는 서울과 수도권에 소재한 대학교 재학생을 대상으로 2017. 7. 10~8. 8까지 5주 동안 500부의 설문지를 배포하였다. 이 중 유효한 482명을 연구대상으로 데이터 코딩(data coding)과 데이터 크리닝(data cleaning)을 거쳐, SPSS 18.0 통계와 AMOS 18.0 프로그램으로 분석하였다. 본 연구의 주요결과는 확증편향에 대한 선호직업유형 중 사업형은 정(+)적 직접영향력(${\beta}=.374$), 자유형은 정(+)적 직접영향력(${\beta}=.326$), 직장형은 부(-)적 직접 영향력(${\beta}=-.274$)을 보였다. 취업불안은 직장형만 더 가중되며, 확증편향은 사업형과 자유형이 노력이나 성취동기에서 원인을 찾는 반면, 직장형은 사회적 환경 및 구조적 문제로 인식한다는 결과를 보여주었다. 결국, 확증편향과 취업불안은 정도의 차이가 있을 뿐 모든 사람이 가지고 있으며 여기에 개인별 선호 직업유형이 영향을 미친다는 것이다. 대학생들의 선호직업유형이 취업준비과정에서 갖는 확증편향과 불안감을 이해하고 취업불안감소에 도움이 될 수 있음이 검증되었으며, 진로지도에 유용하게 활용될 것으로 기대된다.
RFID는 유비쿼터스 환경의 다양한 응용분야에서 기본적인 기술로 사용되어 왔다. 특히, 사물 인터넷을 위한 향후 RFID 기술의 폭 넓은 활용의 장애물중의 하나는 태그 리더기에 의한 RFID 데이터의 근본적인 비 신뢰성이다. 특히, 읽기 손실과 잘못된 읽기 같은 읽기오류 문제는 RFID 시스템이 적절히 처리해야 할 필요가 있다. 왜냐하면, 미들웨어 시스템이 전달한 오류 데이터는 궁극적으로 응용 서비스의 품질을 저하시킬 수 있기 때문이다. 따라서 높은 품질의 서비스를 위해서 지능형 RFID 미들웨어 시스템은 응용에 깨끗한 데이터를 전달하기 위해 읽기오류를 상황에 따라 적절하게 처리하여야 한다. 읽기 오류를 해결하기 위한 보편적인 방법 중의 하나는 슬라이딩 윈도우 필터의 사용이다. 따라서 최적의 윈도우 크기를 결정하는 것은 특히 모바일 환경에서는 읽기 오류를 줄이기 위해 쉽지 않은 중요한 일이다. 본 논문에서는 지능형 윈도우 크기 조정을 통해 읽기 오류를 줄이기 위하여 단일 태그를 위한 RFID 데이터 정제 방안을 제안한다. 이항 샘플링을 기반으로 한 기존 연구와 달리, 본 논문에서는 가중치 평균을 사용한다. 이는 최근의 읽기가 더 정확한 현재의 태그 전이를 나타낼 수 있으므로 과거와 현재의 읽기를 차별화하는 일이 필요하다는 것에 기반을 두고 있다. 가중치 평균을 사용하므로 이질적인 읽기 패턴을 갖는 모바일 환경에서도 효율적으로 적응하여 윈도우 크기를 동적으로 조정할 수 있게 된다. 뿐만 아니라, 윈도우 내의 읽음 패턴과 감소되는 윈도우 크기의 효과를 분석함으로서 더욱 효율적이고 정확한 크기 조정 결정을 할 수 있도록 한다. 제안한 방안을 사용하면 RFID 미들웨어 시스템이 응용에 좀 더 정확하고 무결점의 데이터를 제공함으로써 본래의 응용 서비스 품질을 보장할 수 있도록 한다는 궁극적인 목적을 달성할 수 있을 것으로 기대한다.
IRecently, researches on the recognition of indoor user situations through various sensors in a smart home environment are under way. In this paper, the case study was conducted to determine the operation of the robot vacuum cleaner by inferring the user 's indoor situation through the operation of home appliances, because the indoor situation greatly affects the operation of home appliances. In order to collect learning data for indoor situation awareness model learning, we received feedbacks from user when there was a mistake about the cleaning situation. In this paper, we propose a semi-supervised learning method using user feedback data. When we receive a user feedback, we search for the labels of unlabeled data that most fit the feedbacks collected through genetic algorithm, and use this data to learn the model. In order to verify the performance of the proposed algorithm, we performed a comparison experiments with other learning algorithms in the same environment and confirmed that the performance of the proposed algorithm is better than the other algorithms.
Idiopathic pulmonary fibrosis (IPF) is one of the most dreadful lung diseases which effects the performance of the lung unpredictably. There is no any authentic natural history discovered yet pertaining to this disease and it has been very difficult for the physicians to diagnosis this disease. With the advent of Artificial intelligent and its related technologies this task has become a little bit easier. The aim of this paper is to develop and to explore the machine learning models for the prediction and diagnosis of this mysterious disease. For our study, we got IPF dataset from Haeundae Paik hospital consisting of 2425 patients. This dataset consists of 502 features. We applied different data preprocessing techniques for data cleaning while making the data fit for the machine learning implementation. After the preprocessing of the data, 18 features were selected for the experiment. In our experiment, we used different machine learning classifiers i.e., Multilayer perceptron (MLP), Support vector machine (SVM), and Random forest (RF). we compared the performance of each classifier. The experimental results showed that MLP outperformed all other compared models with 91.24% accuracy.
플래시 메모리는 기존의 회전식 자기 매체에 비해서 속도가 빠르고, 충격에 강한 장점이 있다. 이런 특성으로 인해 기존의 가전, 통신 기기, 휴대 기기에서 저장매체로써 플래시 메모리의 사용이 증대하고 있고, 더불어 저장 매체로 플래시 메모리를 사용한 파일 시스템의 필요성도 증가하고 있다. 저장 매체로써 플래시 메모리는 위와 같은 장점 외에 두 가지 문제점을 가지고 있다. 첫째, 데이타를 덧쓸 수가 없다는 점이다. 데이타를 덧쓰기 위해서는 데이타를 저장하기 전에 플래시 메모리를 지워야 하는데, 지우는 작업은 1초 정도의 시간이 소요된다. 따라서, 플래시 메모리에 저장된 데이타를 수정할 때, 시간이 오래 걸리게 되는데, 본 논문에서는 기존의 LFS(Log-structured File System) 방식으로 데이타를 저장하여 이와 같은 문제점을 해결하였다. 플래시 메모리의 두 번째 문제점은 수명이 제한되어 있다는 점이다. 본 논문에서는 cleaning policy를 통하여 수명을 최대한 연장시킬 수 있도록 하였다. 본 논문에서 구현한 플래시 파일 시스템은 소용량 저장 매체에 적합한 FAT를 사용하여 성능을 향상시켰고, FAT를 구현할 EO 발생할 수 있는 문제점을 해결하였다. 또한, 차례 쓰기, 무작위 쓰기의 실험을 통해서 성능을 분석하였다.
본 연구는 MDP 적용 후 타액으로 오염된 지르코니아 수복물을 다양한 방법으로 세척한 후 전단결합강도를 비교하여 세척방법이 결합강도에 미치는 영향을 알아보고자 한다. 80개의 지르코니아 시편을 8개의 군으로 나누었다. 모든 시편에 MDP를 적용한 후 한 개의 군(음성대조군)을 제외하고 나머지 군에 타액을 적용하여 오염시켰다. 그 중 한 개의 군(양성대조군)은 타액 오염 후 세척하지 않고 즉시 레진 시멘트를 이용하여 접착하였다. 나머지 6개의 군의 시편을 물을 이용하여 세척하고 MDP를 적용하거나(물+MDP) 적용하지 않은 군(물), Ivoclean으로 세척하고 MDP를 적용하거나(IVOCLEAN+MDP) 적용하지 않은 군(IVOCLEAN), 차아염소산나트륨을 이용하여 세척하고 MDP를 적용하거나(NaOCl+MDP) 적용하지 않은 군(NaOCl)으로 분류하였다. 모드 시편은 $37^{\circ}C$ 증류수에 24시간 저장한 후 전단강도를 측정하였고, ANOVA, Tukey's post hoc test를 이용하여 전단강도를 분석하였고, MDP의 재적용 여부가 미치는 영향에 대해서는 student t-test를 이용하여 통계분석하여 다음의 결과를 얻었다. 양성대조군이 가장 낮은 전단강도 값을 나타냈으며, 물군과 NaOCl군이 낮은 전단강도 값을 나타내며 양성대조군과 유의한 차이가 없었다. IVOCLEAN군은 물군과 NaOCl군보다 유의하게 높은 전단강도 값을 나타내며 음성대조군과 유의한 차이가 없었다. MDP를 재적용한 것은 물과 차아염소산나트륨을 이용한 경우 MDP를 재적용하지 않은 경우와 유의한 차이를 나타내면서 음성대조군과 유의한 차이가 없었다. Ivoclean을 사용한 경우 MDP 재적용 여부와는 관계없이 음성대조군과 유의한 차이가 없었다. 결론적으로, 세척방법에 따라 전단강도는 영향을 받으며, MDP 재적용 여부와는 관계없이 Ivoclean이 효과적이며, 물과 차아염소산나트륨 사용시에는 MDP를 다시 적용해주는 것이 결합강도를 향상시킬 수 있는 방법으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.