• 제목/요약/키워드: DARS 로봇

검색결과 13건 처리시간 0.018초

자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링 (An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots)

  • 이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

분류자 시스템과 인공면역네트워크를 이용한 자율 분산 로봇시스템 개발 (Development of Distributed Autonomous Robotic Systerrt Based on Classifier System and Artificial Immune Network)

  • 심귀보;황철민
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.699-704
    • /
    • 2004
  • 본 논문에서는 인공 면역 시스템과 분류자 시스템에 기반하여 동작하는 자율분산로봇 시스템을 제안한다. 시스템에서 로봇들의 행동은 전역행동과 지역행동으로 분류된다. 전역행동은 환경에서 작업을 탐색하는데 이를 빠르게 수행하기 위하여 집합과 분산의 두 가지 행동으로 이루어져 있다 이때 인공 면역 시스템은 로봇이 어떤 행동을 선택하여 행동할 것인가를 결정한다. 지역행동은 탐색된 작업을 수행하는 부분으로서 어떤 로봇들이 협조행동을 할지를 학습하고, 학습한 결과에 따라 작업을 수행하는 행동을 한다. 이를 위해 분류자 시스템을 이용하여 각 로봇들은 주어진 작업에 대하여 학습을 한다. 제안된 시스템에서 학습 알고리즘은 주어지는 작업의 변화로봇들은 주어진 작업을 수행하기 위해 학습을 하고, 주어진 작업이 변할 경우 스스로 대처한다는 면에서 기존의 자율 분산 시스템보다 적응성에서 향상된 시스템이다.

Adaptive Distributed Autonomous Robotic System based on Artificial Immune Network and Classifier System

  • Hwang, Chul-Min;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1286-1290
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System (DARS) based on an Artificial Immune Network (AIN) and a Classifier System (CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIN decides one between these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The relation between global and local increases the performance of system. Also, the proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

  • PDF