• Title/Summary/Keyword: DAMADICS

Search Result 2, Processing Time 0.019 seconds

Principal Component Analysis Based Method for a Fault Diagnosis Model DAMADICS Process (주성분 분석을 이용한 DAMADICS 공정의 이상진단 모델 개발)

  • Park, Jae Yeon;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • In order to guarantee the process safety and prevent accidents, the deviations from normal operating conditions should be monitored and their root causes have to be identified as soon as possible. The statistical theories-based method among various fault diagnosis methods has been gaining popularity, due to simplicity and quickness. However, according to fault magnitudes, the scalar value generated by statistical methods can be changed and this point can lead to produce wrong information. To solve this difficulty, this work employs PCA (Principal Component Analysis) based method with qualitative information. In the case study of our previous study, the number of assumed faults is much smaller than that of process variables. In the case study of this study, the number of predefined faults is 19, while that of process variables is 6. It means that a fault diagnosis becomes more difficult and it is really hard to isolate a single fault with a small number of variables. The PCA model is constructed under normal operation data in order to get a loading vector and the data set of assumed faulty conditions is applied with PCA model. The significant changes on PC (Principal Components) axes are monitored with CUSUM (Cumulative Sum Control Chart) and recorded to make the information, which can be used to identify the types of fault.

PCA Based Fault Diagnosis for the Actuator Process

  • Lee, Chang Jun
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.22-25
    • /
    • 2012
  • This paper deals with the problem of fault diagnosis for identifying a single fault when the number of assumed faults is larger than that of predictive variables. Principal component analysis (PCA) is employed to isolate and identify a single fault. PCA is a method to extract important information as reducing the number of large dimension in a process. The patterns of all assumed faults can be recognized by PCA and these can be employed whether a new fault is one of predefined faults or not. Through PCA, empirical models for analyzing patterns can be trained. When a single fault occurs, the pattern generated by PCA can be obtained and this is used to identify a fault. The performance of the proposed approach is illustrated in the actuator benchmark problem.