• Title/Summary/Keyword: DAG

Search Result 215, Processing Time 0.026 seconds

The transfer of diacylglycerol from lipophor in to fat body in larval Manduca sexta (유충 Manduca sexta 리포포린에 의한 지방체로의 디아실글리세리드 운반)

  • Yun, Hwa-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1770-1774
    • /
    • 2011
  • This paper was to characterize the transfer of diacylglycerol(DAG) from lipophorin to Manduca sexta larval fat bodies. $[^3H]$-DAG-labeled Lp($[^3H]$-DAG-Lp) was incubated with the larval fat bodies under different times and the time of DAG transfer was determined. Incubation of fat bodies with $[^3H]$-DAG-Lp resulted in accumulation of DAG and TAG in the tissue. The transfer of $[^3H]$-DAG was inhibited in the presence of suramin and unlabeled lipophorin, which would be consistent with a lipophorin receptor. The effects of suramin may be complex because it can change membrane properties when bound to the lipophorin receptor and affect the rate of DAG transfer. To investigate the lipid uptake via receptor-mediated endocytosis, we treated with endocytosis inhibitors, ammonium chloride and chloroquine. The results show that the transfer process of lipid by lipophorin and fat bodies is receptor-mediated endocytosis.

Enzymatic Synthesis of Diacylglycerol Oil from Glyceryl Mono-oleate and Conjugated Linoleic Acid Using a Stirred-Batch Type Reactor (회분식 반응기를 이용한 Glyceryl Monooleate와 Conjugated Linoleic Acid로부터 효소적 반응을 통한 디글리세롤 유지의 합성)

  • Jeon, Mi-Sun;Lee, Ki-Teak
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.246-252
    • /
    • 2009
  • Diacylglycerol(DAG) was produced by enzymatic esterification of glyceryl mono-oleate(GMO) and conjugated linoleic acid(CLA) in a stirred-batch type reactor. The reaction was catalyzed by lipozyme RMIM(an immobilized lipase from Rizomucor miehei). DAG was isolated by a short-path distillation process and decolorized. DAG oil was composed of 87.3% DAG, 11.4% triacylglycerol(TAG), and 1.5% monoacylglycerol(MAG)(all w/w). Major fatty acids in DAG oil were oleic acid(54%), CLA(31.1%), and linoleic acid(7%). DAG oil iodine,and acid values were 108.8, 2.57, and 1, respectively. The DAG oil solid fat index(SFI) and thermograms were obtained using differential scanning calorimetry.

Synthesis of Functional Lipid from Glyceryl Monooleate and Conjugated Linoleic Acid by Enzymatic Reaction (Glyceryl Monooleate와 Conjugated Linoleic Acid로부터 효소적 반응을 이용한 기능성 유지 합성)

  • Jeon, Mi-Sun;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.1062-1068
    • /
    • 2009
  • Diacylglycerol (DAG) were synthesized by enzymatic esterification of glyceryl monooleate (GMO) and conjugated linoleic acid (CLA) in a shaking water bath. The reaction was catalyzed by Lipozyme TLIM (immobilized lipase from Thermomyces lanuginosa). Effects of reaction time, molar ratio, enzyme road and molecular sieves were studied. Results of normal-phase high performance liquid chromatography (NP-HPLC) analysis were performed. At 1:1, 2:1 and 3:1 (GMO : CLA) molar ratio and Lipozyme TLIM of 20% amount, DAG were produced in 42.6, 54.4 and 54.6 area% in 1 hr, respectively. When different Lipozyme TLIM amounts (2, 5, 10, 20%) were used with 2:1 (GMO : CLA) molar ratio, DAG were produced 21.4 (24 hr), 51.7 (12 hr), 56.2 (6 hr) and 54.4 (1 hr) area%, respectively. The reaction in the absence of molecular sieves increased DAG contents. The maximum DAG concentration conditions were obtained with molar ratio of 2:1 (GMO : CLA), lipase concentration of 10% (of substrate), 10% molecular sieves and reaction time of 6 hours at 55$^{\circ}C$. Under this reaction condition, produced DAG-rich oil was composed of 69 area% DAG, 7.9 area% TAG, 2 area% FFA, and 21.1 area% MAG.

Effect of conjugated linoleic acid in diacylglycerol-rich oil on the lipid metabolism of C57BL/6J mice fed a high-fat high-cholesterol diet

  • Lee, Jeung Hee;Cho, Kyung-Hyun;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.1
    • /
    • pp.47-58
    • /
    • 2014
  • The effect of conjugated linoleic acid (CLA) isomers esterified in diacylglycerol (DAG)-rich oil on lipid metabolism was investigated. Since dietary DAG has been known to induce the regression of atherosclerosis, CLA-DAG and olive-DAG oils containing similar levels of DAG (51.4~54.2%) were synthesized from olive oil. Hyperlipidemic C57BL/6J mice were then fed high-fat high-cholesterol diets supplemented with these oils (5% each) for 7 wk. The CLA-DAG diet containing 2.1% CLA isomers (0.78% c9,t11-CLA; 1.18% t10,c12-CLA) remarkably increased the levels of total plasma cholesterol and glutamic oxaloacetic transaminase (GOT) along with hepatic cholesterol and triacylglycerol (TAG) contents. Furthermore, the CLA-DAG diet inhibited fat uptake into adipose tissue whereas fat deposition (especially in the liver) was increased, resulting in the development of fatty livers. Hepatic fatty acid composition in the CLA-DAG mice was different from that of the olive-DAG mice, showing higher ratios of C16:1/C16:0 and C18:1/C18:0 in the liver. The activity of hepatic acyl-CoA:cholesterol acyltransferase (ACAT) was higher in CLA-DAG mice while plasma lecithin:cholesterol acyltransferase (LCAT) activity and the ferric reducing ability of plasma (FRAP) were lower in CLA-DAG mice compared to the olive-DAG animals. Results of the present study suggest that CLA incorporation into DAG oil could induce atherosclerosis in mice.

Optimization for the Production of Mono- and Di-acylglycerols from Corn Oil by Enzymic Glycerolysis Using Response Surface Methodology (반응표면분석에 의한 옥수수유 유래 monoacylglycerol과 diacylglycerol 합성 조건의 최적화)

  • Park, Rae-Kyun;Choi, Sang-Won;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.717-722
    • /
    • 2004
  • Response surface methodology was used to optimize production conditions of monoacylglycerol (MAG) and diacylglycerols (DAG) from corn oil by enzymic glycerolysis. Contents of $1,3-DAG\;(Y_1),\;1,2-DAG\;(Y_2),\;total\;DAG\;(Y_3),\;MAG\;(Y_4)$, and total $DAG+MAG\;(Y_5)$ were obtained. Conditions were optimized using central composite design with incubation temperature $(35-75^{\circ}C,\;X_1)$, incubation time (1-11 hr, $X_2$), and amount of hexane added (0-2 mL, $X_3$) as three variables. Content of 1,3-DAG was maximized by 20.43 area% at incubation temperature of $44.92^{\circ}C$, incubation time of 10.24 hr, and hexane content of 1.16 mL, whereas that of 1,2-DAG (26.78 area%) was maximized at $56.32^{\circ}C$, 6.95 hr, and 1.04 mL, respectively. Predicted maximum total DAG content was 45.09 area% at $53.82^{\circ}C$, 8.03 hr, and 1.08 mL, while production conditions of MAG (9.57 arae%) were $64.14^{\circ}C$, 7.00 hr, and 0.13 mL. At variables of $54.07^{\circ}C$, 7.98 hr, and 1.02 mL, maximum content of total DAG+MAG predicted by RSM was 53.54 area%.

Medium-chain fatty acid enriched-diacylglycerol (MCE-DAG) accelerated cholesterol uptake and synthesis without impact on intracellular cholesterol level in HepG2 (중쇄지방산 강화 디아실글리세롤(MCE-DAG)이 간세포 내 콜레스테롤 흡수 및 합성 기전에 미치는 영향)

  • Kim, Hyun Kyung;Choi, Jong Hun;Kim, Hun Jung;Kim, Wooki;Go, Gwang-woong
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.272-277
    • /
    • 2019
  • The effects of medium-chain enriched diacylglycerol (MCE-DAG) oil on hepatic cholesterol homeostasis were investigated. HepG2 hepatocytes were treated with either 0.5, 1.0, or $1.5{\mu}g/mL$ of MCE-DAG for 48 h. There was no evidence of cytotoxicity by MCE-DAG up to $1.5{\mu}g/mL$. The level of proteins for cholesterol uptake including CLATHRIN and LDL receptor increased by MCE-DAG in a dose-dependent manner (p<0.05). Furthermore, proprotein convertase subtilisin/kexin type 9, an inhibitor of LDLR, was dose-dependently diminished (p<0.05), indicating cholesterol clearance raised. MCE-DAG significantly increased 3-hydroxy-3-methylglutaryl-coenzyme A reductase and acetyl-CoA acetyltransferase2 (p<0.05), required for cholesterol synthesis, and their transcriptional regulator sterol regulatory element-binding protein2 (p<0.05). These findings suggest that given conditions of prolonged sterol fasting in the current study activated both hepatic cholesterol synthesis and clearance by MCE-DAG. However, total intracellular level of cholesterol was not altered by MCE-DAG. Taken together, MCE-DAG has the potential to prevent hypercholesterolemia by increasing hepatic cholesterol uptake without affecting intracellular cholesterol level.

Role of Diacyl Glycerol (DAG) in Caprine Sperm Acrosomal Exocytosis Induced by Progesterone

  • Somanath, P.R.;Gandhi, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1091-1097
    • /
    • 2002
  • Capacitated goat spermatozoa generated diacyl glycerol (DAG) when suspended in Krebs-Ringer bicarbonate medium and induced by progesterone or $Ca^{2+}$ ionophore A23187. We have added Sn-1-oleoyl-2-acetyl glycerol externally, to study the effect of DAG in goat sperm acrosomal exocytosis. Addition of neomycin abolished the DAG generating capacity of progesterone in a dose dependent manner, suggesting the involvement of a phosphoinositidase C activated phospholipase C system in the process. The level of increase in phosphatidic acid was considerably low and was produced well after the DAG generation thereby suggesting the involvement of a DAG kinase which phosphorylates DAG to produce PA. The inhibition of progesterone mediated effect by inhibitors of $GABA_A/Cl^{-}$ channel and $Ca^{2+}$ channels further supports the evidence that the events of binding of agonist to the receptor(s), opening of $Ca^{2+}$ channels and the activation of phospholipase C are reconciled to perform the function of acrosome reaction in capacitated goat spermatozoa.

Implementation of DAG-based Co-Scheduling for Efficient RPC Program in the Grid Environment (그리드 환경에서 효율적 RPC프로그램 위한 DAG기반의 Co-Scheduling의 구현)

  • ;;R.S.Ramakrishna
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.472-474
    • /
    • 2004
  • 본 논문은 그리드 환경에서 RPC 프로그래밍 메커니즘의 성능향상을 위하여 DAG기반의 Co-scheduling시스템의 구현에 관한 것이다. 제안된 Co-scheduling의 목적은 복수개의 관련된 RPC들의 데이터 입출력 관계를 고려하여 불필요하거나 중복되는 네트워크상의 데이터전송을 제거함으로써 실행시간을 줄이는 것이다. 사용자에 의해 만들어진 작업흐름을 DAG로 구성하여 각 작업에 대한 자원을 탈당 받아 실행기반 시스템을 통해 수행된다. 이 논문에서는 기존 RPC시스템에서의 오버헤드를 지적하고 그것을 극복하기 위한 DAG기반 Co-scheduling을 설명한다. 실험을 통해 구현된 시스템의 성능향상을 확인한다.

  • PDF

Production of Diacylglycerol from Lipase by the Catalyzed Reaction of Soybean Oil and Glyceryl Monooleate (Lipozyme TLIM을 효소적 반응촉매로 이용한 glyceryl monooleate로부터의 diacylglycerol의 합성)

  • Jeon, Mi-Sun;Lee, Cho-Rong;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.246-249
    • /
    • 2010
  • Diacylglycerol (DAG) was produced from lipase by the catalyzed synthesis of soybean oil (SBO) and glyceryl monooleate (GMO) with Lipozyme TLIM (Thermomyces lanuginosa). Effects of reaction time, molar ratio and enzyme road were studied. When 2:1, 1:1 and 1:2 (SBO:GMO) molar ratios with 20% Lipozyme TLIM were applied in a 1-hr reaction, the concentrations of DAG produced were 17.8, 20.0 and 20.4 g/100 g oil, respectively. Different amounts (2, 5, 10 and 20%) of Lipozyme TLIM were used at a 1:2 (SBO:GMO) molar ratio, and the concentrations of DAG produced in a 1-hr reaction were 10.8, 14.0, 16.9 and 20.4 g/100 g oil, respectively. During a 72-hr reaction, 10.8-22.7 g/100 g oil of DAG were produced under the reaction conditions in this study.

Production of DagA, a ${\beta}$-Agarase, by Streptomyces lividans in Glucose Medium or Mixed-Sugar Medium Simulating Microalgae Hydrolysate

  • Park, Juyi;Hong, Soon-Kwang;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1622-1628
    • /
    • 2014
  • DagA, a ${\beta}$-agarase, was produced by cultivating a recombinant Streptomyces lividans in a glucose medium or a mixed-sugar medium simulating microalgae hydrolysate. The optimum composition of the glucose medium was identified as 25 g/l glucose, 10 g/l yeast extract, and $5g/l\;MgCl_2{\cdot}6H_2O$. With this, a DagA activity of 7.26 U/ml could be obtained. When a mixed-sugar medium containing 25 g/l of sugars was used, a DagA activity of 4.81 U/ml was obtained with very low substrate utilization efficiency owing to the catabolic repression of glucose against the other sugars. When glucose and galactose were removed from the medium, an unexpectedly high DagA activity of about 8.7 U/ml was obtained, even though a smaller amount of sugars was used. It is recommended for better substrate utilization and process economics that glucose and galactose be eliminated from the medium, by being consumed by some other useful applications, before the production of DagA.