• Title/Summary/Keyword: D.N.A

Search Result 10,470, Processing Time 0.038 seconds

DIRECT PRODUCTED W*-PROBABILITY SPACES AND CORRESPONDING AMALGAMATED FREE STOCHASTIC INTEGRATION

  • Cho, Il-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.131-150
    • /
    • 2007
  • In this paper, we will define direct producted $W^*-porobability$ spaces over their diagonal subalgebras and observe the amalgamated free-ness on them. Also, we will consider the amalgamated free stochastic calculus on such free probabilistic structure. Let ($A_{j},\;{\varphi}_{j}$) be a tracial $W^*-porobability$ spaces, for j = 1,..., N. Then we can define the corresponding direct producted $W^*-porobability$ space (A, E) over its N-th diagonal subalgebra $D_{N}\;{\equiv}\;\mathbb{C}^{{\bigoplus}N}$, where $A={\bigoplus}^{N}_{j=1}\;A_{j}\;and\;E={\bigoplus}^{N}_{j=1}\;{\varphi}_{j}$. In Chapter 1, we show that $D_{N}-valued$ cumulants are direct sum of scalar-valued cumulants. This says that, roughly speaking, the $D_{N}-freeness$ is characterized by the direct sum of scalar-valued freeness. As application, the $D_{N}-semicircularityrity$ and the $D_{N}-valued$ infinitely divisibility are characterized by the direct sum of semicircularity and the direct sum of infinitely divisibility, respectively. In Chapter 2, we will define the $D_{N}-valued$ stochastic integral of $D_{N}-valued$ simple adapted biprocesses with respect to a fixed $D_{N}-valued$ infinitely divisible element which is a $D_{N}-free$ stochastic process. We can see that the free stochastic Ito's formula is naturally extended to the $D_{N}-valued$ case.

*-NOETHERIAN DOMAINS AND THE RING D[X]N*, II

  • Chang, Gyu-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.49-61
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be a nonempty set of indeterminates over D, * be a star operation on D, $N_*$={f $\in$ D[X]|c(f)$^*$= D}, $*_w$ be the star operation on D defined by $I^{*_w}$ = ID[X]${_N}_*$ $\cap$ K, and [*] be the star operation on D[X] canonically associated to * as in Theorem 2.1. Let $A^g$ (resp., $A^{[*]g}$, $A^{[*]g}$) be the global (resp.,*-global, [*]-global) transform of a ring A. We show that D is a $*_w$-Noetherian domain if and only if D[X] is a [*]-Noetherian domain. We prove that $D^{*g}$[X]${_N}_*$ = (D[X]${_N}_*$)$^g$ = (D[X])$^{[*]g}$; hence if D is a $*_w$-Noetherian domain, then each ring between D[X]${_N}_*$ and $D^{*g}$[X]${_N}_*$ is a Noetherian domain. Let $\tilde{D}$ = $\cap${$D_P$|P $\in$ $*_w$-Max(D) and htP $\geq$2}. We show that $D\;\subseteq\;\tilde{D}\;\subseteq\;D^{*g}$ and study some properties of $\tilde{D}$ and $D^{*g}$.

ON SIDON SETS IN A RANDOM SET OF VECTORS

  • Lee, Sang June
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.503-517
    • /
    • 2016
  • For positive integers d and n, let $[n]^d$ be the set of all vectors ($a_1,a_2,{\cdots},a_d$), where ai is an integer with $0{\leq}a_i{\leq}n-1$. A subset S of $[n]^d$ is called a Sidon set if all sums of two (not necessarily distinct) vectors in S are distinct. In this paper, we estimate two numbers related to the maximum size of Sidon sets in $[n]^d$. First, let $\mathcal{Z}_{n,d}$ be the number of all Sidon sets in $[n]^d$. We show that ${\log}(\mathcal{Z}_{n,d})={\Theta}(n^{d/2})$, where the constants of ${\Theta}$ depend only on d. Next, we estimate the maximum size of Sidon sets contained in a random set $[n]^d_p$, where $[n]^d_p$ denotes a random set obtained from $[n]^d$ by choosing each element independently with probability p.

CONSTRUCTIONS OF REGULAR SPARSE ANTI-MAGIC SQUARES

  • Chen, Guangzhou;Li, Wen;Xin, Bangying;Zhong, Ming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.617-642
    • /
    • 2022
  • For positive integers n and d with d < n, an n × n array A based on 𝒳 = {0, 1, …, nd} is called a sparse anti-magic square of order n with density d, denoted by SAMS(n, d), if each non-zero element of X occurs exactly once in A, and its row-sums, column-sums and two main diagonal-sums constitute a set of 2n + 2 consecutive integers. An SAMS(n, d) is called regular if there are exactly d non-zero elements in each row, each column and each main diagonal. In this paper, we investigate the existence of regular sparse anti-magic squares of order n ≡ 1, 5 (mod 6), and prove that there exists a regular SAMS(n, d) for any n ≥ 5, n ≡ 1, 5 (mod 6) and d with 2 ≤ d ≤ n - 1.

CONSTRUCTIVE PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL On,2d(q)

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.349-358
    • /
    • 2017
  • The cyclic group $C_n={\langle}(12{\cdots}n){\rangle}$ acts on the set $(^{[n]}_k)$ of all k-subsets of [n]. In this action of $C_n$ the number of orbits of size d, for d | n, is $$O^{n,k}_d={\frac{1}{d}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})(^{n/s}_{k/s})$$. Stanton and White [6] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)={\frac{1}{[d]_{q^{n/d}}}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})[^{n/s}_{k/s}]_{q^s}$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a constructive proof for the positivity of coefficients of the orbit polynomial $O^{n,2}_d(q)$.

The Unfinished Work Transition Probability Distribution of Modulated $n^*$D/D/1 Queue (확률적 $n^*$D/D/1 대기모형의 부하량 전이 확률 분포)

  • Lee, Sang-Cheon;Hong, Jung-Wan
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.738-744
    • /
    • 2000
  • This Paper presents a method for unfinished work transition probability distribution of modulated $n^*D/D/l$ queue with overload period. The Modulated $n^*D/D/l$ queue is well known as a performance analysis model of ATM multiplexer with superposition of homogeneous periodic on-off traffic sources. Theory of probability by conditioning and results of $N^*D/D/l$ queue are used for analytic methodology. The results from this paper are expected to be applied to general modulated $n^*D/D/l$ queue.

  • PDF

COMBINATORIAL PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL $O^{n,3}_d(q)$

  • Lee, Jae-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.455-462
    • /
    • 2012
  • The cyclic group $Cn={\langle}(12{\cdots}n){\rangle}$ acts on the set ($^{[n]}_k$) of all $k$-subsets of [$n$]. In this action of $C_n$ the number of orbits of size $d$, for $d|n$, is $$O^{n,k}_d=\frac{1}{d}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})(^{n/s}_{k/s})$$. Stanton and White[7] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)=\frac{1}{[d]_{q^{n/d}}}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})[^{n/s}_{k/s}]{_q}^s$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a combinatorial proof for the positivity of coefficients of the orbit polynomial $O^{n,3}_d(q)$.

COUNTING FORMULA FOR SOLUTIONS OF DIAGONAL EQUATIONS

  • Moon, Young-Gu;Lee, June-Bok;Park, Young-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.803-810
    • /
    • 2000
  • Let N($d_1,...,{\;}d_n;c_1,...,{\;}c_n$) be the number of solutions $(x_1,...,{\;}x_n){\in}F^{n}_p$ of the diagonal equation $c_lx_1^{d_1}+c_2x_2^{d_2}+{\cdots}+c_nx_n^{d_n}{\;}={\;}0{\;}n{\geq},{\;}c_j{\;}{\in}{\;}F^{*}_q,{\;}j=1,2,...,{\;}n$ where $d_j{\;}>{\;}1{\;}and{\;}d_j{\;}$\mid${\;}q{\;}-{\;}1$ for all j = 1,2,..., n. In this paper, we find all n-tuples ($d_1,...,{\;}d_n$) such that the reduced form of ($d_1,...,{\;}d_n$) and N($d_1,...,{\;}d_n;c_1,...,{\;}c_n$) are the same as in the theorem obtained by Sun Qi [3]. Improving this, we also get an explicit formula for the number of solutions of the diagonal equation, unver a certain natural restriction on the exponents.

  • PDF

Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.53-69
    • /
    • 2020
  • Let (A, M) ⊂ (B, N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N. Suppose henceforth that M ⊆ N. If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A + N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite field.

On the Numbers of Palindromes

  • Bang, Sejeong;Feng, Yan-Quan;Lee, Jaeun
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.349-355
    • /
    • 2016
  • For any integer $n{\geq}2$, each palindrome of n induces a circulant graph of order n. It is known that for each integer $n{\geq}2$, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes ${\sigma}$ with $gcd({\sigma})=1$ to the connected circulant graphs. It was also shown that the number of palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ is the same number of aperiodic palindromes of n. Let $a_n$ (resp. $b_n$) be the number of aperiodic palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ (resp. $gcd({\sigma}){\neq}1$). Let $c_n$ (resp. $d_n$) be the number of periodic palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ (resp. $gcd({\sigma}){\neq}1$). In this paper, we calculate the numbers $a_n$, $b_n$, $c_n$, $d_n$ in two ways. In Theorem 2.3, we $n_d$ recurrence relations for $a_n$, $b_n$, $c_n$, $d_n$ in terms of $a_d$ for $d{\mid}n$ and $d{\neq}n$. Afterwards, we nd formulae for $a_n$, $b_n$, $c_n$, $d_n$ explicitly in Theorem 2.5.