• Title/Summary/Keyword: D.I. diesel engine

Search Result 113, Processing Time 0.027 seconds

The Characteristics of Biodiesel Fuel as an Alternative Fuel of an Agricultural Diesel Engine (농업용 디젤기관의 대체연료로서 바이오디젤유의 특성)

  • Choi S. H.;Oh Y.T.;Lee C.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.115-120
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from diesel engines in these days. In particular, the exhaust emissions of agricultural diesel engines are recognized main cause which influenced environment strongly. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated agricultural D.I. diesel engine. The smoke emission of biodiesel fuel was reduced remarkably in comparison with diesel fuel, that is, it was reduced approximately 50% at 2500 rpm, full load. But, power, torque and brake specific energy consumption didn't have large differences. But, NOx emission of biodiesel fuel was increased compared with commercial diesel fuel. Also, the effects of exhaust gas recirculation (EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with biodiesel fuel (20vol-%) and cooled EGR method($5{\sim}15%$) in an agricultural D.I. diesel engine.

Experimental Study on the Application Characteristics of Bio-diesel blended Fuel by Ultrasonic Irradiation in CRDI type Diesel Engine (CRDI 방식 디젤기관의 초음파 조사 Bio-diesel 혼합연료 적용 특성에 관한 실험 연구)

  • Jung, Y.C.;Im, S.K.;Park, S.Y.;Choi, D.S.;Ryu, J.I.
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2007
  • This is an experimental study on characteristics of engine performance and discharged materials in common-rail type diesel engine. The bio-diesel fuel is mixed with the diesel fuel in common use at the ratio of 20% or 100%. The diesel fuel and blended fuel is irradiated by ultrasonic wave energy. The diese1 fuel, blended fuel, reformed diesel fuel and reformed blended fuel by ultrasonic wave energy are applied to the experimental engine individually. The results are compared with one of the diesel fuel in common use and analyzed.

  • PDF

The Experimental Study on Emission Reduction by Oxygenate Additive in D.I. Diesel Engine (직접분사식 디젤기관에서 함산소계 첨가에 의한 배출가스 저감에 관한 실험적 연구)

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.33-42
    • /
    • 2002
  • Recently, our world is faced with very serious and hard problems related to the air pollution due to the exhaust emissions of the diesel engine. In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated fur direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has three kinds of mixed ratio. And, it was tried to analyze not only total hydrocarbon but individual hydrocarbon components from Cl to C6 in exhaust gas using gas chromatography to seek the reason far remarkable reduction of smoke emission. This study was carried out by comparing the chromatogram with diesel fuel and diesel feel blended DGM(diethylene glycol dimethyl ether) 5%. The results of this study show that individual hydrocarbon(C1∼C6) as well as total hydrocarbon of oxygenated fuel is reduced remarkably than that of diesel fuel.

A Study on the Effects of the Swirl Flow on the Distribution of Soot in the D.I. Diesel Engine (스월 유동이 직분식 디젤엔진 내의 Soot 분포에 미치는 영향에 관한 연구)

  • Lee, Gi-Hyeong;Jeong, Jae-U;Lee, Chang-Sik;Park, Hyeon-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.458-464
    • /
    • 2002
  • Recently, many researches have been performed to improve performances of the combustion and emission in the D.I.Diesel engine. Especially reduction of the soot formation in tole combustion chamber is the essential to acquire the improvement of the emission performance. These emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Thus, in this study, the distribution of soot in the diesel combustion is measured by LII(laser induced incandescence) and LIS(Laser induced scattering) method. From this experimental results, it is confirmed that the swirl flow intensified by SCV(swirl control valve) is effective on the reduction of soot in the combustion chamber.

Durability Test of a Direct Injection Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 직접분사식 디젤기관의 내구특성)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • To evaluate the durability of direct injection diesel engine using biodiesel fuel, a small D. I. diesel engine was operated on a blend(BDF 20) of 20% biodiesel fuel and 80% diesel fuel for 200 hours. Engine dynamometer test was performed at a load of 90% and a speed of 1900 rpm to monitor the engine performance and exhaust emissions. Engine performance parameters and exhaust emissions were sampled at 1 hour interval for analysis. The combustion maximum pressure and the crank angle at this maximum pressure as a combustion variation factor were considered to study the combustion characteristics of BDF 20 in diesel engine during durability test. As the results, the standard deviations and errors of combustion variation factors on BDF 20 were very little and combustion characteristics were very stable during the durability test. BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with special increase of nitrogen oxides compared to diesel fuel. There was no also unusual change in engine oil composition from using BDF 20. Most of engine parts were clean and showed little wear, but soots were detected around the hole of fuel injector when BDF 20 was used in direct injection diesel engine for 200 hours.

A Study on Injection and Combustion of D.I. Diesel Engine with Electronic-hydraulic Fuel Injection System (전자유압식 분사계를 갖는 D.I. 디젤기관의 분사 및 연소에 관한 연구)

  • Kim, Hyun-Gu;Ra, Jin-Hong;Ahn, Soo-Kil
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.1
    • /
    • pp.83-97
    • /
    • 1997
  • Diesel engine is widely used for ship and industry source of power because of its high thermal efficiency and reliability and durability. However it lead to air pollution due to exhaust gas, and it is important to develop diesel engine of lower air-pollution to decrease the hazardous exhaust gas emissions. As one of the ways, the study for practically using the high pressure of fuel injection and variable injection timing system is being processing. The high pressure injection, which is said to be an effective means for reducing both NOx and particulate emissions, and great improvements in combustion characteristics have been reported by many researchers. In this study, electronic-hydraulic fuel injection system and hydraulic fuel injector system have been applied to the D.I. test engine for high pressure injection and variable injection timing. The injection pressure and injection rate depending upon accumulator pressure were measured with strain gage and Bosch injection rate measuring system before fitting the system into test engine, and analyzed the characteristics of the injection system. The combustion characteristics with this injection system has been analyzed with data concerning heat release rate, pressure rising rate, ignition point, ignition delay and maximum pressure value.

  • PDF

An Experimental Study on the Performance Improvement and Emission Reduction in a Turbocharged D.I. Diesel Engine (과급식 디젤엔진의 성능개선 및 배기가스 저감에 관한 실험적 연구)

  • 윤준규;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.36-46
    • /
    • 2000
  • The performance improvement and emission reduction in a turbocharged D.I. diesel engine was studied experimentally in this paper. The system of intake port, fuel injection and turbochager are very important factors which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, fuel injection system and turbocharger. The swirl ratio of intake port was modified by hand-working and measured by impulse swirl meter. Through this steady flow test, we knew that the increase of swirl ratio is decreasing the mean flow coefficient, whereas the gulf factor is increasing. And the optimum results of engine performance and emission are as follows; the swirl ratio is 2.43, injection timing is BTDC 13。 CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 AND turbine A/R 1.19.

  • PDF

Some Considerations for Performance of D.I. Diesel Engine Using Auxiliary Fuel Such as Alcohol (알코올을 보조적으로 사용한 직접분사식 디젤기관의 성능에 관한 고찰)

  • 이형곤;방중철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.28-35
    • /
    • 2002
  • The objective of this paper is to quantitatively investigate the effects of alcohol mixture on the combustion improvement of main fuel in supplying alcohol to direct injection diesel engine by auxiliary injection method and blend method. If alcohol is supplied, engine performance greatly improves in high load range. In case of supplying ethanol, BSFC improves, the emission of smoke and NO decreases by delaying main fuel injection timing 5$\^{C}$A. The maximum delivery quantity of alcohol is limited to approximately 50% of total fuel delivery due to misfire and knocking. The limit quantity of main fuel injection that does not accompany misfire and the deterioration of BSFC was approximately 15∼18.5mg/st.

The Effect of Combustion Process by Intensifying the Air Flow in Combustion Chamber of D.I. Diesel Engine (직접분사식 디젤기관의 연소실내 공기유동강화가 연소과정에 미치는 영향)

  • Bang, Joong-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.153-159
    • /
    • 2007
  • The performance of a direct-injection type diesel engine often depends on the strength of air flow in the cylinder, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the process of combustion in the cylinder was affected by the mixture formation process. In the present paper, high speed photography was employed to investigate the effectiveness of holes penetrated from the bottom of cavity wall to piston crown for some more useful utilization of air. The holes would function to improve mixing of fuel and air by the increase of air flow in the cylinder. The results obtained are summarized as follows, (1) Activated first of the combustion by shorten of ignition timing and rapid flame propagation (2) Raised the combustion peak pressure, more close to TDC the formation timing of peak pressure.

Development of the Optimization Analysis Technology for the Combustion System of a HSDI Diesel Engine (HSDI 디젤엔진의 연소계 최적화 해석기술 개발)

  • Lee Je-Hyung;Lee Joon-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.153-158
    • /
    • 2006
  • To optimize the combustion system in a HSDI diesel engine, a new analysis technology was developed. The in-cylinder 3-D combustion analysis was carried out by the modified KIVA-3V, and the spray characteristics for the high pressure injection system were analyzed by HYDSIM. The combustion design parameters were optimized by coupling the KIVA-3V and the iSIGHT. The optimization procedure consists of 3 steps. The $1^{st}$ step is the sampling method by the Design of Experiment(DOE), the $2^{nd}$ step is the approximation using the Neural Network method, and the $3^{rd}$ step is the optimization using the Genetic Algorithm. The developed procedures have been approved as very effective and reliable, and the computational results agree well with the experimental data. The analysis results show that the optimized combustion system in a HSDI diesel engine is capable of reducing NOx and Soot emissions simultaneously keeping a same level of the fuel consumption(BSFC).