• Title/Summary/Keyword: D-ra

Search Result 732, Processing Time 0.035 seconds

Enhancement of anti-inflammatory and anti-tumorigenic properties of 3D-spheroid formed mesenchymal stem cells derived from rheumatoid arthritis joints

  • Seung-Chan Lee;Chae-Yeon Hong;Yong-Ho Choe;Tae-Seok Kim;Won-Jae Lee;Gyu-Jin Rho;Sung-Lim Lee
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.246-254
    • /
    • 2022
  • Current studies have revealed the capacity of mesenchymal stem cells (MSCs) in term of immunomodulatory properties, and this distinct potential is downgraded according to the disease duration of patients-derived MSCs. In order to enhance the immunomodulatory and anti-tumorigenic properties of the rheumatoid arthritis (RA) joints-derived MSCs, we aggregate synovial fluid-derived MSCs from RA joints (RA-hMSCs) into 3D-spheroids by the use of hanging drop culture method. Cells were isolated from synovial fluids of RA joints with longstanding active status over 13 years. For aggregation of RA-hMSCs into 3D-spheroids, cells were plated in hanging drops in 30 μL of advanced DMEM (ADMEM) containing 25,000-30,000 cells/drop and cultured for 48 h. To analyze the comparative immunomodulatory effects of 3D-spheroid and 2D monolayer cultured RA-hMSCs and then cells were cultured in ADMEM supplemented with 20% of synovial fluids of RA patients for 48 h and were evaluated by qRT-PCR for their expression of mRNA levels of inflammatory and anti-inflammatory markers. Cellular aggregation of RA-hMSCs was observed and cells were aggregate into a single sphere. Following treatment of RA patient's synovial fluids into the RA-hMSCs, spheroids formed RA-hMSCs showed significantly (p < 0.05) higher expression of TNFα stimulated gene/protein 6 (TSG-6) than the monolayer cultured RA-hMSCs. Therefore, the 3D-spheroid culture methods of RA-hMSCs were more effective than 2D monolayer cultures in suppressing inflammatory response treated with 20% of RA-synovial fluids by expression of TNFα (TSG-6) according to the immune response and enhanced secretion of inflammatory factors.

Effect of Retinoids on Human Breast Cancer Cells (인체 유방암 세포에서 retinoids의 영향에 대한 연구)

  • 윤현정;신윤용;공구
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.51-66
    • /
    • 2004
  • Retinoids, better known as vitamin A, have been reported to inhibit the growth of several breast cancer cell lines in culture and to reduce breast tumor growth in animal models. Furthermore, retinoids can augment the action of other breast cancer cell growth inhibitors both in vitro and in vivo. Clinically, interest has increased in the potential use of retinoids for the prevention and treatment of human breast cancer. We have examine the effect of all-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) on human breast cancer cell(MCF-10A, T47-D, MCF-7) proliferation using MTT assay and cell cycle analysis(FACS). Overexpression of cyclin D1 protein is observed in the majority of breast cancers, suggesting that dysregulated expression of cyclin D1 might be a critical event in breast cancer carcinogenesis. We investigated whether tRA and 9-cis RA might affect expression of cyclin D1 on human breast cancer cells(MCF-10A, T47-D, MCF-7) using RT-PCR and west-ern bolt. In MCF-10A cells, either tRA or 9-cis RA treatment did not affect the cell proliferation. In T47-D cells and MCF-7 cells, either tRA or 9-cis RA treatment showed the inhibition of the cell proliferation over control cells and also inhibit the estrogen stimulated cell proliferation when it was given together with estrogen. The effect of retinoids was dose- and time- dependent. T47-D cells treated with 1.0 $\muM$ tRA undergo G0/G1-phase arrest by Day 5. MCF-7 cells treated with 1.0 $\muM$ tRA undergo S-phase arrest by Day 5. All-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) inhibited the cyelin D1 mRNA and protein expression levels of human MCF-7 and T47-D breast carcinoma cells in vitro. The data indicate that retinoids can reduce cyclin D1 expression levels in a variety of breast cell lines in vitro and result in inhibition of cell proliferation. tRA-mediated growth inhibition and cyclin D1 expression inhibition is more potent than 9-cis RA mediated that. tRA-mediated inhibition effect is more potent on T47-D cells than on MCF-7 cells. Our data suggest that retinoids activity is different according to property of cell lines. Future chemoprevention of breast cancer studies using retinoids will be necessary to determine the mechanism of the retinoids-mediated growth inhibition.

  • PDF

고온성 알콜발효 효모의 Alcohol Dehydrogenase의 특성

  • Yea, Sang-Soo;Lim, Si-Kyu;Sohn, Ho-Yong;Jin, Ing-Nyul;Rhee, In-Koo;Kim, Young-Ho;Seu, Jung-Hwn;Park, Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.386-390
    • /
    • 1997
  • The characteristics of alcohol dehydrogenase (ADH, EC 1.1.1.1, alcohol:NAD oxidoreductase) of thermotolerant alcohol-producing yeasts, Saccharomyces cerevisiae RA-74-2 and Kluyveromyces marxianus RA-912, were compared with that of mesophilic S. cerevisiae D, an industrial strain. Under anaerobic culture condition, both S. cerevisiae RA-74-2 and D had similar level of ADH activity at 30$\circ$C, and the activity of S. cerevisiae RA-74-2 at 37$\circ$C was the same level at 30$\circ$C. However, the level of ADH activity of S. cerevisiae D at 37$\circ$C decreased about 70% of that at 30$\circ$C. The level of enzyme activity of K. marxianus RA-912, which showed lower alcohol productivity than S. cerevisiae RA-74-2 and D, was about 43% of those strains at 30$\circ$C, and decreased somewhat at 37$\circ$C. The results showed a good correlation between the alcohol productivities and the level of ADH activities of these strains grown at 30$\circ$C and 37$\circ$C. And the higher heat stability of ADH of S. cerevisiae RA-74-2 than that of S. cerevisiae D seemed to reflect the ability of high temperature fermentation. Despite of its fermentation ability even at 45$\circ$C, however, the ADH of K. marxianus RA-912 showed lower heat stability than that of S. cerevisiae D. Both S. cerevisiae RA-74-2 and D showed similar patterns of two bands of ADH isozyme, and the low band of S. cerevisiae RA-74-2 moved slightly faster than that of S. cerevisiae D. The staining intensity of the bands of S. cerevisiae D at 37$\circ$C was weaker than those at 30$\circ$C. However, S. cerevisiae RA-74-2 showed no differences in total intensity of the bands of 30$\circ$C and 37$\circ$C. As the patterns of cellular proteins and ADH isozyme of K. marxianus RA-912 were different from S. cerevisiae RA-74-2 and D, K. marxianus might have its own characteristic ADH system.

  • PDF

Histone Methylation Regulates Retinoic Acid-induced Hoxc Gene Expression in F9 EC Cells (F9 EC 세포에서 레티노산에 의해 유도되는 Hoxc 유전자의 발현에 히스톤 메틸화가 미치는 영향)

  • Min, Hyehyun;Kim, Myoung Hee
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.703-708
    • /
    • 2015
  • Hox genes encode a highly conserved family of homeodomain-containing transcription factors controlling vertebrate pattern formation along the anteroposterior body axis during embryogenesis. Retinoic acid (RA) is a key morphogen in embryogenesis and a critical regulator of both adult and embryonic cellular activity. Specifically, RA regulates Hox gene expression in mouse- or human-derived embryonic carcinoma (EC) cells. Histone modification has been reported to play a pivotal role in the process of RA-induced gene expression and cell differentiation. As histone modification is thought to play an essential role in RA-induced Hox gene expression, we examined RA-induced initiation of collinear expression of Hox genes and the corresponding histone modifications in F9 murine embryonic teratocarcinoma (EC) cells. Hox expression patterns and histone modifications were analyzed by semiquantitative RT-PCR, RNA-sequencing, and chromatin immuno-precipitation (ChIP)-PCR analyses. The Hoxc4 gene (D0) was initiated earlier than the Hoxc5 to –c10 genes (D3) upon RA treatment (day 0 [D0], day 1 [D1], and day 3 [D3]). The Hox nonexpressing D0 sample had a strong repressive marker, H3K27me3, than the D1 and D3 samples. In the D1 and D3 samples, reduced enrichment of the H3K27me3 marker was observed in the whole cluster. The active H3K4me3 marker was closely associated with the collinear expression of Hoxc genes. Thus, the Hoxc4 gene (D1) and all Hoxc genes (D3) expressed H3K4me3 upon transcription activation. In conclusion, these data indicated that removing H3K27me3 and acquiring H3K4me3 regulated RA-induced Hoxc gene collinearity in F9 cells.

Physiological Activities of Bioconversion Products Using Bacillus Subtillis KJ-3 and Their Mixtures (Bacillus Subtilis KJ-3를 이용한 생물전환물 및 그 혼합물의 생리활성)

  • Lee, Jin Young;Dong, Jaekyung;Chung, Yuseong;Kim, Mi-Ryung;Kang, Jae Seon
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1086-1095
    • /
    • 2019
  • This research was performed to develop a new material consisting of a mixture of Red Allium cepa (RA) Cucurbita moschata duch (CM), and Angelica gigas Nakai (AG). RA and CM have low storage stability because of their high moisture content. Therefore, their major components were extracted and used for the research after a content analysis. In order to overcome these limitations, the quercetin from RA, ${\beta}-carotene$ from CM, and decursin/decursinol angelate (D/DA) from AG were separately extracted, and the biochemical activity of each extract and mixture was compared. RA was bioconverted by the Bacillus subtillis KJ-3 (BS3) after ethanol extraction. After bioconversion, the quercetin content of RA was increased by 128.9%. ${\beta}-carotene$ was detected in the CM ethanol extract and its content was very low concentrations at 0.2 mg/g. The AG ethanol extract (1 mg) contained 0.4146 mg and 0.3659 mg of D/DA, respectively. The purity of the D/DA was found to be about 78%. The flavonoid and polyphenol content of each extract and their mixtures (mixture 1 (RA:CM:AG = 5:2:3), mixture 2 (RA:CM: AG = 3:5:2), and mixture 3 (RA:CM:AG = 3:2:5)) were measured. In addition, the cell survival rate, anti-inflammatory activity, and antioxidant ability were also evaluated. In all the results, the antioxidant activity of mixture 3 was most effective. Therefore, these findings provide basic data for future food development using a 3:2:5 mixture of RA, CM, and AG.

Electrochemical Ionic Mass Transfer Correlation in Fluid-Saturated Porous Layer

  • Cho, Eun Su
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.814-817
    • /
    • 2015
  • A new ionic mass transfer correlation is derived for the fluid-saturated, horizontal porous layer. Darcy-Forchheimer model is used to explain characteristics of fluid motion. Based on the microscales of turbulence a backbone mass transfer relation is derived as a function of the Darcy-Rayleigh number, $Ra_D$ and the porous medium Schmidt number, $Sc_p$. For the Darcy's limit of $Sc_p{\gg}Ra_D$, the Sherwood number, Sh is a function of $Ra_D$ only. However, for the region of high $Ra_D$, Sh can be related with $Ra_DSc_p$. Based on the present backbone equation and the electrochemical mass transfer experiments which are electro plating or electroless plating, the new ionic mass transfer correlation is suggested in the porous media.

A study on F8L10D-N LoRa RF Module for Drone Based live Broadcasting system

  • Mfitumukiza, Joseph;Mariappan, Vinayagam;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • In this paper, we present the study on the proposed design of a real-time transmission of a video from the drone to broadcasting station (OBVan) by using F8L10D-N LoRa Module. Nowadays, LoRa technology is proved to be the mass of low cost, long range machine-to-machine connectivity. Particularly in the field of broadcasting and communication system, F8L10D-N LoRa RF Module spread spectrum technology with long transmission distance and strong penetrative ability that is double stronger than traditional FSK as well as PSK modulation scheme.

Study on Stabilization of Retinaldehyde using Drug-in-Cyclodextrinin-Liposome (DCL) for Skin Wrinkle Improvement (레틴알 안정화를 위한 사이클로덱스트린-리포좀에 관한 연구)

  • Ha, Ji Hoon;Choi, Hyeong;Hong, In Ki;Han, Sang-Kuen;Bin, Bum Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.77-85
    • /
    • 2022
  • Retinaldehyde (RA), vitamin A derivative, is an intermediate between retinol and retinoic acid and has an excellent wrinkle improving effect. In this study, Drug-in-cyclodextrin-in-liposome (DCL) was used to enhance the stability and skin penetration of RA. The complex of RA and hydroxypropyl-beta-cyclodextrin (HP-β-CD) was prepared by the freeze-drying method, and the presence or absence of inclusion of retinal was confirmed by UV-Vis spectrometer, FT-IR and SEM images. RA was captured in HP-β-CD about 95.6% on 1 : 15 (w/w). The retinal-HP-β-CD complex was encapsulated in liposomes using a homomixer and microfluidizer, with an average particle size of 215 ± 4.2 nm and a zeta potential of -31.2 ± 0.5 mv. In the evaluation of the degradation stability of RA, degradation rate of RA-HP-β-CD-liposomes in water was 1.8% higher than RA-liposome (5.8%), RA-HP-β-CD complex (9.7%) and RA alone (37.6%). RA cream (0.05% RA) including RA-HP-β-CD-liposomes was prepared for clinical test with wrinkle-improving efficacy and skin dermis denseness evaluated for 2 or 4 weeks. RA cream showed a significant wrinkle improving effect without skin irritation. In conclusion, it was confirmed that the double stabilization technology using the DCL system contribu tes to the effect of improving skin wrinkles by increasing the stabilization of retinal.

Cytochalasin D Regulates Retinoic Acid Induced COX-2 Expression but not Dedifferentiation via p38kinase Pathway in Rabbit Articular Chondrocytes

  • Yu, Seon-Mi;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.343-347
    • /
    • 2009
  • Cytochalasin D (CD) is known as a disruptor of actin cytoskeleton architecture in chondrocytes. We have studied the role of CD in retinoic acid (RA) caused dedifferentiation and inflammation responses in rabbit articular chondrocytes. We have examined the effect of CD on RA induced dedifferentiation of chondrocytes. CD inhibited RA induced dedifferentiation determined by Western blot analysis and Alcian blue staining in rabbit articular chondrocytes. Also, CD additionally reduced inflammation response molecules such as cyclooxygenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) in RA treated cells. Treatment of CD reduced phosphorylation of p38 by treatment of RA. Inhibiton of p38kinase with SB203580 reduced expression of COX-2 and production of $PGE_2$ by treatment of CD in RA treated cells. But, Inhibiton of p38kinase with SB203580 did not any relationship with effect of CD on RA caused dedifferentiation. In summary, our results indicate that CD regulates RA reduced expression of COX-2 and production of PGE2 via p38kinase pathway.

  • PDF

All-trans Retinoic Acid-Associated Low Molecular Weight Water-Soluble Chitosan N anoparticles Based on Ion Complex

  • Kim Dong-Gon;Choi Changyong;Jeong Young-Il;Jang Mi-Kyeong;Nah Jae-Woon;Kang Seong-Koo;Bang Moon-Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.66-72
    • /
    • 2006
  • The purpose of this study is to develop novel nanoparticles based on polyion complex formation between low molecular weight water-soluble chitosan (LMWSC) and all-trans retinoic acid (atRA). LMWSC nanoparticles encapsulating atRA based on polyion complex were prepared by mixing of atRA into LMWSC aqueous solution using ultrasonication. In FTIR spectra, the carbonyl group of atRA at 1690 $cm^{-1}$ disappeared or decreased when ion complexes were formed between LMWSC and atRA. In ${1}^H$ NMR spectra, specific peaks of atRA disappeared when atRA-encapsulated LMWSC (RAC) nanoparticles were reconstituted into $D_{2}O$ while specific peaks both of atRA and LMWSC appeared in $D_{2}O$/DMSO (1/3, v/v) mixture. XRD patterns also showed that the crystal peaks of atRA were disappeared by encapsulation into LMWSC nanoparticles. LMWSC nanoparticles encapsulating atRA have spherical shapes with particle size below 200 nm. The mechanism of encapsulation of atRA into LMWSC nanoparticles was thought to be an ion complex formation between LMWSC and atRA. LMWSC nanoparticles showed high atRA loading efficiency over 90$\%$ (w/w). AtRA was continuously released from nanoparticles over 10 days. In in vitro cell cytotoxicity test, free atRA showed higher cytotoxic effect against CT 26 colon carcinoma cell line on 1 day. However, RAC nanoparticles showed similar cytotoxicity against CT 26 cells on 2 day. These results suggest the potential for the introduction of LMWSC nanoparticles into various biomedical fields such as drug delivery.