• Title/Summary/Keyword: D-glass fiber

Search Result 195, Processing Time 0.027 seconds

Evaluation of Punching Shear for Flat Plates Using GFRP Plate Shear Reinforcement (GFRP 판을 전단보강재로 사용한 플랫 플레이트의 뚫림전단 성능 평가)

  • Lee, Young Hak;Kim, Min Sook;Hwang, Seung Yeon;Choi, Jinwoong;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.413-420
    • /
    • 2014
  • The purpose of this study is to experimentally investigate the shear behavior of flat plate that reinforced by embedded GFRP(glass fiber reinforced polymer) plate with openings. Shape of the GFRP shear reinforcement is a plate with several openings to ensure perfect integration with concrete. The test was performed on 7 specimens to check shear strength of flat plate that reinforced by GFRP plate. The parameters include the spacing of the shear reinforcement and amount of the shear reinforcement. The result of test showed that when amount of shear reinforcement was increased, shear strength improved. The result of test showed that maximum shear strength was confirmed when spacing of shear reinforcement was 0.3d. The calculation of the shear strength of reinforced flat plate with GFRP plate based on the KCI was compared with the test results.

Parametric Analysis on Ultimate Behavior of Cylindrical GFRP Septic Tank (원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석)

  • Kim, Sung Bo;Cho, Kwang Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1337-1347
    • /
    • 2013
  • The parametric analysis on ultimate behavior of buried cylindrical GFRP(Glass Fiber Reinforced Polymer) septic tank was presented. Two kinds of F.E. analysis model(soil-spring model and 3D full model) was constructed. The ultimate behavior of septic tank was investigated according to the size of stiffened steel ring and properties of underground soil. Ramberg-Osgood model and Druker-Prager model were used for material nonlinear characteristics of GFRP septic tank and soil, respectively. The diameter and thickness of stiffened steel ring inside septic tank, elastic modulus and internal friction angle of soil were selected for parametric variables. The ultimate behavior of septic tank, load-displacement, axial and hoop strain, were calculated and investigated.

Analysis of impact damage behavior of GFRP-strengthened RC wall structures subjected to multiple explosive loadings (복합 폭발하중을 받는 GFRP 보강 RC 벽체 구조물의 비선형 충격 손상거동 해석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1033-1036
    • /
    • 2008
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with glass fiber reinforced polymer (GFRP) composites are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a GFRP-strengthened RC wall structure.

  • PDF

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

STRESS DISTRIBUTION OF ENDODONTICALLY TREATED MAXILLARY SECOND PREMOLARS RESTORED WITH DIFFERENT METHODS: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (상이한 방법으로 수복한 근관치료된 상악 제2소구치의 응력분포: 3차원 유한요소법적 분석)

  • Lim, Dong-Yeol;Kim, Hyeon-Cheol;Hur, Bock;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.69-79
    • /
    • 2009
  • The purpose of this study was to evaluate the influence of elastic modulus of restorative materials and the number of interfaces of post and core systems on the stress distribution of three differently restored endodontically treated maxillary second premolars using 3D FE analysis. Model 1, 2 was restored with a stainless steel or glass fiber post and direct composite resin. A PFG or a sintered alumina crown was considered. Model 3 was restored by EndoCrown. An oblique 500 N was applied on the buccal (Load A) and palatal (Load B) cusp. The von Mises stresses in the coronal and root structure of each model were analyzed using ANSYS. The elastic modulus of the definitive restorations rather than the type of post and core system was the primary factor that influenced the stress distribution of endodontically treated maxillary premolars. The stress concentration at the coronal structure could be lowered through the use of definitive restoration of high elastic modulus. The stress concentration at the root structure could be lowered through the use of definitive restoration of low elastic modulus.

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Preparation of Silica Sol by Partial Hydrolysis of TEOS and High Purity Silica Glass Fiber (TEOS의 부분가수분해에 의한 실리카 졸의 합성과 유리섬유 제조)

  • Yang, Hyun S.;Kwon, Oh H.;Lee, Jae D.;Rho, Jae S.;Kim, Young H.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.823-831
    • /
    • 1996
  • At the ratio [$H_2O$]/[TEOS]=1.7, the silica sol was synthesized by partial hydrolysis in the presence of acid catalyst. After stabilizing the silica sol by trimethylsilylation, the molecular weight and viscosity of the sol obtained at various reaction times were examined to determine a best spinnability of the sol. Gel fibers were prepared from the sol solution after removing solvent in the solution, and the gel fibers were heated at $1,000^{\circ}C$. The prepared silica fibers were in the shape of circular cross-section and their tensile strength and $SiO_2$ purity were $83{\pm}20kg/mm^2$ and about 99.997%, respectively.

  • PDF

Effect of PVOH or polyDADMAC Addition on Surface Sizing with Oxidized Starch (PVOH와 polyDADMAC 첨가에 의한 산화전분의 표면사이징 효과 변화)

  • Seo, Dongil;Jeong, Young Bin;Jeong, Kwang Ho;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • High loading of printing and writing grades with fillers has many advantageous aspects in papermaking because it allows decreasing fiber use and reducing manufacturing cost. High loading technology, however, has some disadvantageous aspects as well. It decreases physical properties of papers, especially strength properties. The problem associated with high loading can be reduced by applying surface sizing starch solution onto paper surface. It is important to control the penetration of the surface sizing starch solution into paper web to obtain the desired property improvement. In this study, the effect of the addition of two polymers into starch solution on paper properties has been examined. PVOH and polyDADMAC were used as polymeric additives for surface sizing with oxidized starch. Viscosity of starch solutions and surface roughness of dried starch films on glass slides showed that some interactions between polymeric additives and oxidized starch have been occurred and the most extensive interaction with starch solution was obtained with high molecular weight polyDADMAC. Low molecular weight PVOH was most effective in improving folding endurance and internal bond strength. On the other hand, polymer addition showed no effect on surface strength of paper. This indicates that not the level of starch holdout but the bonding strength of starch itself has predominant influence on surface strength of paper.

The Effect of Circulat Hole Size and Distribution on Strength of Braided Composite (브레이드 복합재료의 원공의 크기와 분포가 재료강도에 미치는 영향)

  • Lee, Gyeong-U;Gang, Tae-Jin
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.253-258
    • /
    • 1994
  • The effect of hole size and hole-to-hole distance in the braided and laminated composite was studied in terms of tensile strength, pin bearing strength, and flexural strength of S2-glass fiber braided polyester. The tensile strength reduction with hole size was well fitted with he Whitney and Nuismer's prediction for the laminated composite. The characteristic distance was measured to be about 1.6mm for braided composite and 1.8mm for laminated one. The effect of distance between the centers of two circu lar holes on tensile strength was negligible when the distance between these two holes was larger than 4 times of the diameter of circular hole for both braided and laminated composite. The side effect was diminished when the center of hole was located 3 times farther than the diamet.er of the hole. The pin bearing strengths was decreased with the size of pin hole for both braided and laminated composite.

  • PDF

A comparison of the fracture resistances of endodontically treated mandibular premolars restored with endocrowns and glass fiber post-core retained conventional crowns

  • Guo, Jing;Wang, Zhiming;Li, Xuesheng;Sun, Chaoyang;Gao, Erdong;Li, Hongbo
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.489-493
    • /
    • 2016
  • PURPOSE. This in-vitro study aimed to evaluate the fracture resistances and failure modes of endodontically treated mandibular premolars restored with endocrowns and conventional post-core retained crowns. MATERIALS AND METHODS. Thirty mandibular premolars were assigned into three groups (n=10): GI, intact teeth; GE, teeth with endocrowns; GC, teeth with conventional post-core supported crowns. Except for the teeth in group GI, all specimens were cut to 1.5 mm above the cementoenamel junction and endodontically treated. Both endocrowns and conventional crowns were fabricated from lithium-disilicate blocks using a CEREC 3D CAD/CAM unit. All specimens were subjected to thermocycling and then to $45^{\circ}$ oblique compressive load until fracture occurred. The fracture resistance and failure mode of each specimen were recorded. Data were analyzed with one-way ANOVA and LSD Post Hoc Test (${\alpha}=.05$). RESULTS. The fracture resistances of GE and GC were significantly lower than that of GI (P<.01), while no significant difference was found between GE and GC (P=.702). As of the failure mode, most of the specimens in GE and GC were unfavorable while a higher occurrence of favorable failure mode was presented in GI. CONCLUSION. For the restoration of mandibular premolar, endocrown shows no advantage in fracture resistance when compared with the conventional method. Both of the two methods cannot rehabilitate endodontically treated teeth with the same fracture resistances that intact mandibular premolars have.