• Title/Summary/Keyword: D-erythro-Sphinganine

검색결과 2건 처리시간 0.014초

Chirospecific Synthesis of D-erythro- and L-threo-Sphinganines from Sugars

  • Jeong, Ill-Yun;Lee, Jin-Hwan;Lee, Byong-Won;Kim, Jin-Hyo;Park, Ki-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권5호
    • /
    • pp.617-622
    • /
    • 2003
  • D-erythro-sphinganine 1 and L-threo-sphinganine 2 have been prepared in the enantiomerically pure form by the chirospecific manner. Key intermediates, 2-amino-3-hydroxy-4-pentenoates 8 and 12, were obtained from L-glucono-1,5-lactone and L-gulonic acid g-lactone via a simultaneous dealkoxyhalogenation.

Sphingolipid Metabolic Changes during Chiral C2-Ceramides Induced Apoptosis in Human Leukemia Cells

  • Baek, Mi-Young;Yoo, Hwan-Soo;Kazuyasu Nakaya;Moon, Dong-Cheul;Lee, Yong-Moon
    • Archives of Pharmacal Research
    • /
    • 제24권2호
    • /
    • pp.144-149
    • /
    • 2001
  • N-acetylsphingosine (C2-ceramide) is a synthetic water-soluble ceramide mimicking the activity of natural ceramides. By fixing chiral conformation on carbon numbers 2 and 3 in the ceramide structure, four chiral C2-ceramides naming d-erythro-, I-erythro-, d-threo-and 1-three C2-ceramide were synthesized. We have investigated the chiral effects of these C2-ceramides on the sphingolipid metabolism, particularly on both the sphingolipid bio- synthetic pathway and on the degradation pathway. In both HL-60 and U937 cells, the chiral C2-ceramide ($10{\mu}\textrm{m}$) showed sphingosine accumulation monitored fluoromatrically by a high performance liquid chromatographic separation of the sphingoid bases. Most importantly, in HL-60 cells, l-erythro C2-ceramide induced a 50 fold increase in sphingosine as compared to the control, while l-threo C2-ceramide exhibited a minimal 7-fold in-crease. In contrast, sphinganine, another sphingoid base, showed less accumulation by any chiral C2-ceramide tested under the same conditions. These results suggested that chiral C2-ceramide primarilyacts on the sphingolipid degradation pathway rather than on the sphingolipid biosynthetic route. The strong $C_0/G_1$ phase arrest in the cell cycle by treatment of I-erythro C2-ceramide indicates that the blockade of the sphingolipid degradation pathway might be concomitantly involved in the dysfunction of the cell cycle. On the other hand, the fact that all chiral C2-ceramides tested failed to inhibit the activity of sphingosine kinase acting on the removal of sphingosine by producing sphingosine-1 -phosphate demonstrates that chiral C2- ceramides may increase sphingosine by activating various ceramidases by which natural ceramides are divided into sphingosine and free fatty acids. However, the precise steps involved in this interaction are still unknown.

  • PDF