• Title/Summary/Keyword: D-axis control

Search Result 429, Processing Time 0.021 seconds

Control of vortex shedding from circular cylinder by acoustic excitation (원통내부의 음향여기에 의한 와류유출제어)

  • Kim, Gyeong-Cheon;Bu, Jeong-Suk;Lee, Sang-Uk;Gu, Myeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1649-1660
    • /
    • 1996
  • The flow around a circular cylinder was controlled by an acoustic excitation issued from a thin slit along the cylinder axis. The static pressure distributions around the cylinder wall and flow characteristics in the near wake have been measured. Experiments were performed under three cases of Reynolds number, 7.8 * 10$\^$4/, 2.3 * 10$\^$5/ and 3.8 * 10$\^$5/. The effects of excitation frequency, sound pressure level and the location of the slit were examined. Data indicate that the excitation frequency and the slit location are the key parameters for controlling the separated flow. At Re$\_$d/, = 7.8 * 10$\^$4/, the drag is reduced and the lift is generated to upward direction, however, at Re$\_$d/, =2.3 * 10$\^$5/ and 3.8 * 10$\_$5/, the drag is increased and lift is generated to downward direction inversely. It is thought that the lift switching phenomenon is due to the different separation point of upper surface and lower surface on circular cylinder with respect to the flow regime which depends on the Reynolds number. Vortex shedding frequencies are different at upper side and lower side. Time-averaged velocity field shows that mean velocity vector and the points of maximum intensities are inclined to downward direction at Re$\_$d/ = 7.8 * 10$\^$4/, but are inclined to upward direction at Re$\_$d/ = 2.3 * 10$\^$5/.

Implementation of Joystick for Flight Simulator using WiFi Communication

  • Myeong-Chul Park;Sung-Ho Lee;Cha-Hun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.111-118
    • /
    • 2023
  • In this paper, we propose a WiFi-based joystick with an acceleration sensor and a vibration sensor that can be used in flight simulators and VR fields. The flight simulator is a technology belonging to the ICT and SW application field and provides a simulation environment that reproduces the aircraft environment. Existing flight simulator control devices are fixed to a specific device and the user's activity area is limited. In this paper, a 3D space manipulation device was implemented for the user's free use of space. In addition, the proposed control device is designed as a WiFi communication board and display that displays information and performs 3-axis sensing for accurate and sophisticated control compared to existing VR equipment controllers. And the applicability was confirmed by implementing a Unity-based virtual environment. As a result of the implementation device verification, it was confirmed that the control device operates normally through the communication interface, It was confirmed that the sensing values in the game and the sensing values measured on the implemented board matched each other. The results of this study can be used for VR and various metaverse related contents in addition to flight simulators.

Efficiency Optimization Control of IPMSM Drive using Multi AFLC (다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

Torque Trajectory Control of Interior PM Synchronous Motor Using Adaptive Input-Output Linearization Technique (적응 입출력 선형화 제어 기법을 이용한 매입형 영구 자석 동기 전동기의 토오크 궤적 제어)

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Kim, Hyun-Soo;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.578-581
    • /
    • 1996
  • A torque trajectory control of the IPM synchronous motor using an adaptive input-output linearization technique is proposed. The input-output linearization is performed using the estimated torque output with the knowledge of machine parameters. The linearized model gives the output torque error under the variation of the flux linkage. To give a good torque tracking in the presence of the flux linkage variation, the flux linkage will be estimated where the adaptation law h derived by the Popov's hyperstability theory and the positivity concept. This estimated value is also used for the generation of the d-axis current command for the maximum torque control. Thus, a good torque tracking and the exact maximum torque-per-current operation will be obtained.

  • PDF

Characteristics Analysis of V Shape Pole Changing Memory Motor using Finite Element Method (유한요소법을 이용한 V형상 극변환 메모리 모터의 특성 분석)

  • Kim, Young-Hyun;Kim, Su-Yong;Kim, Jung-Woo;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.872-877
    • /
    • 2015
  • The Permanent Magnet (PM) machine used at speed control using field-weakening control method. But the field-weakening current, which reduces the field flux for high speeds, causes significant copper and core losses. Therefore, this paper deals with the PM performance evaluations in a pole changing memory motor (PCMM). The PCMM can change the number of magnetic poles and produce two types of torque. When the motor operates with eight poles, it produces a magnetic torque at low rotational speeds. When the motor changes to four poles, it produces both magnetic torque and reluctance torque at high speeds. The paper explain the principle and basic characteristics of the motor by using a finite element method magnetic-field analysis, which consists of a PM magnetized by a pulse d-axis current of the armature winding. The results of our experiment show that the proposed motor reduces core loss by 10% and 55% under no-load and load conditions, and doubles the speed range of the motor.

A Study on a Rotor Position Sensor Offset Detection Method in a Permanent Magnet Synchronous Generator (영구자석형 동기발전기의 회전자 위치검출 센서의 옵셋 검출에 관한 연구)

  • Park, Kyusung;Shin, Sung-Hwan;Lee, Hokwang;Yoon, Youngdeuk;Lee, Geunho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.914-921
    • /
    • 2014
  • In this paper, an algorithm is suggested to detect an offset angle of the absolute rotor position sensor after the initial assembly of a PMSG. Unlike previous studies in a stationary state, this one is not designed to detect an electrical angle but rather the absolute position of the rotor is detected while operating the generator. Also,a position sensor, current sensors and voltage sensor were used to ensure reliability. This technique completes the detection of the sensor offset in two steps. In the first step, a zero-crossing of the EMF is measured using a voltage sensor to detect the electrical angle offset when the alternator is actuated by the engine. In the second step, a high frequency current is injected along the d-axis on-line during the control of the generation, eventually to obtain the inductance using a DFT (Discrete Fourier Transform), and then to ultimately extract the final electrical angle offset through the comparison of the inductance magnitude. The suggested algorithm was validated with PSIM simulation and, furthermore, was tested with actual experiments on a dynamometer.

A Study on High Efficiency Vector Controlled Induction Motor Drive System (고효율 벡터제어 유도전동식 구동 시트템에 관한 연구)

  • Kim, Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1174-1182
    • /
    • 1990
  • A hgih efficiency and good dynamic performance drive system of an induction motor is presented in this paper using vector control technique. If the induction motor is driven under light loads with rated flux, the iron loss is excessively large compared with the copper loss, resulting in poor motor efficiency. High efficiency drive of an induction motor can be achieved by adjusting the flux level which leads the total motor loss to be a minimum value. Generally reducing the flux degrades the dynamic performance, but the dynamic performance of the proposed system is also maintained high. If the d-axis is coincident with rotor flux phasor in synchronous rotating reference frame, the stator current can be decoupled as flux component and torque component. At steady state, the developed motor torque is proportional to the product of the flux and torque component. The combination of the two components minimizing the motor loss could be found with numerical method. As the procedure to obtain the optimal combination is too hard, it is found experimentally. The system block diagram is suggested for maximum efficiency control. The proposed system is studied through digital simulation and verified with experiment. The experimental results show the possiblity of a high efficiency drive with good dynamic performance of maximum efficiency control.

  • PDF

Speed Control of the IPMSM Using The Torque Output Feedback (IPMSM의 토크출력피드백을 이용한 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • This study proposes a controller that compensates torque error for precise angular velocity tracking and a method to compensate the stability of controller in implementation. Also, it is proved that the designed controller can be asymptotically stable based on Lyapunov stability theory. The proposed controller is able to control the d-axis reference current to arbitrary values and easily achieve control performance with two gains. As a result of applying to IPMSM of about 750W class, the steady state error with reference speed 1200 [RPM] is within 0.1 [%]. And it can be seen that it is an asymptomatic stable controller overcoming disturbance within about 0.2 second in application of constant load of about 5 [Nm].

IPMSM Design for Sensorless Control Considering Magnetic Neutral Point Shift According to Magnetic Saturation

  • Choi, JaeWan;Seol, Hyun-Soo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.752-760
    • /
    • 2018
  • In this paper, interior permanent magnet synchronous motor (IPMSM) design for sensorless drive, considering magnetic neutral point shift according to magnetic saturation, has been proposed. Sensorless control was divided into a method based on inductance and a method based on back induced voltage. Because induced voltage is very small at zero or low speed, error in rotor initial position estimation may occur. Using the ratio of saliency addresses this problem. When using high-frequency injections at low speed, the rotor's initial position is estimated at the smallest portion of the inductance. IPMSM has the minimum inductance at the d-axis. However, if magnetic saturation leads to magnetic neutral point variation, following the load current change, there is a change in the minimum point of inductance. In this case, it can lead to failure of initial rotor position estimation. As a result, it is essential that the blocking design has an inductance minimum point shift. As such, in this study, an IPMSM design method, by blocking magnetic neutral point change, has been proposed. After determining the inductance profile based on the finite element analysis (FEA), the results of proposed method were verified.

A Study on The Novel Structured 3-DOF Spherical Motor (새로운 3-자유도 구형 모터에 관한 연구)

  • Lee, Dong-Cheol;Kim, Dae-Kyong;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1362-1370
    • /
    • 2008
  • This paper describes the design and characteristic analysis of a novel 3-DOF(Degree of Freedom) spherical motor. For multi DOF actuating, several numbers of motors have been used. By the using of normal motors they connected each other in single joint, is necessary to a several type of complex power transmission devices. The 3-DOF spherical motor can drive roll, pitch, and yaw motion in only one unit and it is not necessary to use additional gears and links parts. Therefore the using of 3-DOF spherical motor can eliminate; combined effects of inertia, backlash, non-linear friction, and elastic deformation of gears. In this paper, we propose the novel structured 3-DOF spherical motor and derive its principles of operation. Firstly, we designed concept model of novel structured 3-DOF spherical motor. Next, we derive the control method by calculating the currents. Also, to have intuitive driving control, we express the rotor position in equivalent angle-axis system and determine the exciting period of currents from the calculation result of the currents. To verify the control method, we calculated the currents by the position of rotor. and then we analyzed the characteristics by 3D Finite Element Method when the calculated currents are excited.