• Title/Summary/Keyword: D-axis control

Search Result 429, Processing Time 0.026 seconds

Field Weakening Control of Permanent Magnet Synchronous Motor fed by Hysteresis Current Controlled PWM Inverter (히스테리시스 전류 제어형 PWM 인버터에 의한 영구자석 동기 전동기의 약계자 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Yang, Chun-Suk;Yoon, Myung-Kyun;Yoo, Bo-Min
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.167-170
    • /
    • 1991
  • The back e.m.f. of PMSM is increased as the speed is increased and it saturates the current regulator because it counteracts the available output voltage of the inverter. In the PM motor, however, the required armature terminal voltage can be reduced within the maximum output voltage of the inverter by field weakening control, in which the air gap flux is weakened by the d-axis armature current. In this paper, the field weakening control of the surface PMSM fed by a hysteresis current control led PWM inverter based on the microprocessor is presented. To show the validity of the proposed control method, the simulation and experimental results are provided.

  • PDF

A Study on the Design of Compact Polymer Bushing with Inner Control Shield (내부쉴드 구조에 따른 컴팩트한 폴리머 부싱 설계에 관한 연구)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.436-442
    • /
    • 2009
  • This paper describes a study on the design of compact polymer bushing with inner control shield. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. In accordance, the field control can be achieved by means of the designs of such inner control shields. The floating and ring shield designs was decreased electric field concentration at critical parts of the bushing. The shield gaps is formed between field shaper and ring shield. Accordance equipotential lines extend through gaps. As a result, the resulting electrical stress are thus reduced in the range $17{\sim}23%$ in the bushing with floating and ring shield designs. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

High-Performance Control of Three-Phase Four-Wire DVR Systems using Feedback Linearization

  • Jeong, Seon-Yeong;Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.351-361
    • /
    • 2016
  • Power quality is a critical issue in distribution systems, where a dynamic voltage restorer (DVR) is commonly used to mitigate the voltage disturbances for loads. This paper deals with a nonlinear control for the three-phase four-wire (3P-4W) DVR under a grid voltage unbalance and nonlinear loads in the distribution system, where a novel control scheme based on the feedback linearization technique is proposed. Through feedback linearization, a nonlinear model of a DVR with a PWM voltage-source inverter (VSI) and LC filters is linearized. Then, the controller design of the linearized model is performed by applying the linear control theory, where the load voltages are kept constant by controlling the d-q-0 axis components of the DVR output voltages. To keep the load voltage unchanged, an in-phase compensation strategy is employed, where the load voltages are recovered to be the same as the previous voltage without a change in the magnitude. With this strategy, the performance of the DVR becomes faster and more stable even under unbalanced source voltages and nonlinear loads. The validity of the proposed control strategy has been verified by simulation and experimental results.

Performance Improvement of an AHRS for Motion Capture (모션 캡쳐를 위한 AHRS의 성능 향상)

  • Kim, Min-Kyoung;Kim, Tae Yeon;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1167-1172
    • /
    • 2015
  • This paper describes the implementation of wearable AHRS for an electromagnetic motion capture system that can trace and analyze human motion on the principal nine axes of inertial sensors. The module provides a three-dimensional (3D) attitude and heading angles combining MEMS gyroscopes, accelerometers, and magnetometers based on the extended Kalman filter, and transmits the motion data to the 3D simulation via Wi-Fi to realize the unrestrained movement in open spaces. In particular, the accelerometer in AHRS is supposed to measure only the acceleration of gravity, but when a sensor moves with an external linear acceleration, the estimated linear acceleration could compensate the accelerometer data in order to improve the precision of measuring gravity direction. In addition, when an AHRS is attached in an arbitrary position of the human body, the compensation of the axis of rotation could improve the accuracy of the motion capture system.

A Study on the Auto-MTPT Algorithm to Make the Speed-based Current-map of IPMSM for Traction of Inwheel (인휠 구동용 IPMSM의 속도 기반 전류맵 작성을 위한 Auto-MTPT 알고리즘)

  • Park, Gui-Yeol;Park, Jung-Woo;Hwang, Yo-Han;Shin, Duck-Woong;Moon, Chae-Joo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.411-417
    • /
    • 2016
  • Theoretical IPMSM control technique is complicated, and reliability is low because of the changing parameters. Further, in case of general look-up table designing method which obtains torque characteristics (according to current and speed) or torque characteristics (according to magnetic flux through the entire control region), obtaining a precise result can be difficult and has the disadvantage taking too much time to establish a current look-up table. In this paper, the new auto maximum torque point tracking (MTPT) algorithm that automatically finds the optimum stator d - q axis electric current reference through the entire speed region is devised; consequently, it could establish a 3D look-up table with torque characteristics according to current and speed. In case of using the devised auto MTPT algorithm, the result value detailed was obtained in comparison with the generalized look-up design technique, and checked to reduce the current look-up table establishment time.

Robot Target Tracking Method using a Structured Laser Beam (레이저 구조광을 이용한 로봇 목표 추적 방법)

  • Kim, Jong Hyeong;Koh, Kyung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1067-1071
    • /
    • 2013
  • A 3D visual sensing method using a laser structured beam is presented for robotic tracking applications in a simple and reliable manner. A cylindrical shaped laser structured beam is proposed to measure the pose and position of the target surface. When the proposed laser beam intersects on the surface along the target trajectory, an elliptic pattern is generated. Its ellipse parameters can be induced mathematically by the geometrical relationship of the sensor coordinate and target coordinate. The depth and orientation of the target surface are directly determined by the ellipse parameters. In particular, two discontinuous points on the ellipse pattern, induced by seam trajectory, indicate mathematically the 3D direction for robotic tracking. To investigate the performance of this method, experiments with a 6 axis robot system are conducted on two different types of seam trajectories. The results show that this method is very suitable for robot seam tracking applications due to its excellence in accuracy and efficiency.

Design of 3D Printer Based on SLA Using LSU and Test of Scanning Mechanism (LSU를 이용한 SLA 방식의 3D프린터 설계 및 스캐닝 기구부 동작 테스트)

  • Jang, Min;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1225-1230
    • /
    • 2017
  • 3D printers have been growing mainly in industrial use, but the recent growth of the personal 3D printer market advanced through economic effects and cost reduction due to technological development. However, current 3D personal printers are very low in customer satisfaction on the limitations of molding speed, size, and precision. In this paper, we propose SLA 3D printer using LSU to overcome the technical limitation of personal 3D printer. In order to verify the operation of the scanning mechanism which is responsible for core functions, the movement of molding board using stepping motor and laser output test was conducted. These tests ensure that the laser was operating and control well was confirmed that a certain point is output to the X-axis by means of a laser module and a polygon mirror. 3D printers which are proposed to improve the accuracy and manufacturing speed is expected to replace the traditional low-budget 3D printer.

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.

Result of Radiation Therapy of Cerebellar Medulloblastoma - with Emphasis on the Neuraxis Dose - (전중추신경계 조사선량을 중심으로 한 수아세포종의 방사선치료성적)

  • Kim Joo Young;Kim Il Han;Ha Sung Whan;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 1993
  • Treatment of cerebellar medulloblastoma has been much improved with modern surgical technique for gross total tumor removal and adequate radiation therapy for the whole craniospinal axis. Questions have been arosen about the optimal radiation dose for the preventive treatment of whole cranium and whole spinal axis. Recently, many authors have reported their treatment results as comparable to older data, using lower than conventional dose of 3,600 cGy-4,000 cGy. For 50 patients treated between 1981 and 1990 at the Department of Radiation Therapy of SNUH, retrospective analysis was done for the treatment result, especially the neuraxis control, by radiation dose for the presymptomatic area of the disease. Analysis only by total spinal dose did not give any significant difference. But further analysis by following patient group; 3,600 cGy/150 cGy (n=6), 3,000 cGy/150 cGy (n=10), 2,400 cGy/150 cGy (n=17) and 2,400 cGy/100-120 cGy (n=11) showed significant improvement of neuraxis control by decreasing order (p =0.003). There was no significant difference in overall survival between the groups. For the 19 patients who had been confirmed initially as having no neuraxis disease, TDF 30 was the cur-off value that could prevent neuraxis failure (p =0.004). We couldn't define any TDF value that give reasonable control for the patient group with positive CSF study at initial diagnosis.

  • PDF

Simulation Based Design of Intelligent Surveillance Robot for Mobility (모바일화를 위한 지능형 경계로봇의 시뮬레이션기반 설계)

  • Hwang, Ki-Sang;Kim, Do-Hyun;Park, Kyu-Jin;Park, Sung-Ho;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2008
  • An unmanned surveillance robot consists of a machine gun, a laser receiver, a thermal imager, a color CCD camera, and a laser illuminator. It has two axis control systems for elevation and azimuth. Because the current robot system is mounded at a fixed post to take care of surveillance tasks, it is necessary to modify such a surveillance robot to be installed on an UGV (Unmanned Ground Vehicle) system in order to watch blind areas. Thus, it is required to have a stabilization system to compensate the disturbance from the UGV. In this paper, a simulation based design scheme has been adopted to develop a mobile surveillance robot. The 3D CAD geometry model has first been produced by using Pro-Engineer. The required pan and tilt motor capacities have been analyzed using ADAMS inverse dynamics analysis. A target tracking and stabilization control algorithm of the mobile surveillance robot has been developed in order to compensate the motion of the vehicle which will experience the rough terrain. To test the performance of the stabilization control system of the robot, ADAMS/simulink co-simulations has been carried out.