• Title/Summary/Keyword: D-Optimal design

Search Result 1,330, Processing Time 0.034 seconds

A Study on Power System Stabilization using $H_{\infty}$ Optimal Control Method ($H_{\infty}$ 최적 제어기법을 이용한 전력계통의 안정화에 관한 연구)

  • Hur, D.R.;Wang, Y.P.;Lee, J.P.;Chung, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.232-234
    • /
    • 1998
  • In this paper, we are considered various possible disturbance conditions in order to design controller, $H_{\infty}$ optimal controller is successfully designed to control in such as situations. To do this, we are determined weighting function and design parameter $\gamma$ to method of trial and error by Glover-Doyle algorithm. To compare with $H_{\infty}$-PSS and conventional-PSS which is applied in nominal system and load variations, the dynamic characteristics of $H_{\infty}$-PSS controller was verified which has a good response.

  • PDF

Performance Analysis of Screw Air Compressor (스크류 공기 압축기의 성능해석)

  • Park, Dong-Gyu;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.184-193
    • /
    • 2002
  • This study aims at the optimal design of the screw rotor and its performance analysis. The optimal design of the screw rotor's shape has been performed theoretically. Also, the performance analysis technique of an oil-injected screw air compressor is developed. The effect of internal leakage, heat exchange between air and oil, and flow resistance at suction and discharge ports are included in the performance analysis. Some numerical examples of the volumetric efficiency and adiabatic efficiency for sample rotors are demonstrated for various lobe combination, rotor wrap angles and L/D ratios.

A Case Study on the Sustainability for a Stanchion of Recreational Crafts based on the Design for Additive Manufacturing Using a FFF-type 3D Printer (FFF 3D 프린터를 이용한 DfAM 기반 소형선박용 스탠션 지속가능 개발 사례 연구)

  • Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.294-302
    • /
    • 2021
  • In this study, the 3D printing technique called design for additive manufacturing (DfAM) that is widely used in various industries was applied to marine leisure ships of equipment. The DfAM for the stanchion for crew safety was applied to the equipment used in an actual recreational craft. As design constraints, the design alternatives were not to exceed the safety and weight of the existing stainless steel material, which were reviewed, and the production of a low-cost FFF-type 3D printing method that can be used even in small shipyards was considered. Until now, additive manufacturing has been used for manufacturing only prototypes owing to its limitations of high manufacturing cost and low strength; however, in this study, it was applied to the mass production process to replace existing products. Thus, a design was developed with low manufacturing cost, adequate performance maintenance, and increased design freedom, and the optimal design was derived via structural analysis comparisons for each design alternative. In addition, a life-cycle assessment based on the ISO 1404X was conducted to develop sustainable products. Through this study, the effectiveness of additive manufacturing was examined for future applications in the shipbuilding industry.

Design and analysis of a mode size converter composed of periodically segmented taper waveguide surrounded by trenches (좌우 트렌치를 구비한 분리 주기 테이퍼 도파로 모드 크기 변환기의 설계 및 성능 분석)

  • Park Bo Gen;Chung Young Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.43-49
    • /
    • 2004
  • In this paper, we have designed a mode size converter to reduce coupling loss between super-high delta silica optical waveguides and single mode fibers. The new mode size converter has three design aspects; periodically segmented taper waveguide for minimal size, lateral taper waveguide for simple fabrication, and surrounding trenches to improve coupling loss. In the optimal mode size converter design, coupling loss is 0.33dB/point without trenches and 0.2dB/point with trenches.

Material Analysis and Shape Optimization of a Deployable Lightweight Satellite Antenna Reflector (전개형 경량 위성 안테나 반사판의 재료분석 및 형상 최적화)

  • Kwak, Do Hyuk;Jung, Hwa Young;Lee, Jae Eun;Kang, Kwang Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.185-192
    • /
    • 2017
  • In this paper, we reviewed major design parameters for a solid type of deployable antenna and its structural design. We performed modal analysis for a single reflector panel made of aluminum and CFRP (carbon fiber reinforced plastic) to confirm the appropriateness of selected materials. We then predicted the elastic modulus of CFRP using the principles of unidirectional composite elasticity stiffness predictions such as the ROM (Rule of Mixture) and HSR (Hart Smith 10% Rule). To optimize the shape of the antenna reflector, a structural stiffness analysis was performed using derived numerical optimization factors. Six structural stiffness analyses were performed using the constructed experimental design method. The resulting optimal shape conditions are proposed to meet the structural stiffness requirements while minimizing weight.

A Study of Optimal Lotion Manufacturing Process Containing Angelica gigas Nakai Extracts by Utilizing Experimental Design and Design Space Convergence Analysis (실험 설계와 디자인 스페이스 융합 분석을 통한 Angelica gigas Nakai 추출물을 함유한 로션 제조의 최적 공정 연구)

  • Pyo, Jae-Sung;Kim, Hyun-Jin;Yoon, Seon-hye;Park, Jae-Kyu;Kim, Kang-Min
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.132-140
    • /
    • 2022
  • This study was conducted to identify the optimal lotion manufacturing conditions with decursin and decursinol angelate of Angelica gigas Nakai extraction. Lotion was confirmed that it had viscosity (5,208±112 cPs), assay (99.71±1.01%), and pH (5.62) for 3 months. The optimization of manufacturing conditions of mixing 4 for lotion formulation were made by 22+3 full factorial design. Mixing temperature (40-80℃) and mixing time (10-30 min) were used as independent variables with three responses(assay, pH, and weight variation) as critical quality attributes (CQAs). The model for assay and weight variation identified a proper fit having a determination coefficient of the regression equation (about 0.9) and a p-value less than 0.05. Estimated conditions for the optimal manufacturing process of lotion were 61.93℃ in mixing temperature and 15.85 min in mixing time. Predicted values at the mixing temperature (60℃) and mixing time (20 min) were 100.69% of assay, 5.57 of pH, and 98.07% of weight variation. In the verification of the actual measurement the obtained values showed 100.29±0.98% of assay, 5.57±0.02 of pH, and 98.27±0.89% of weight variation, respectively, in good agreement with predicted values.

Mixutre Optimization of Hwangdo Peach (Prunus persica L. Batsch) Dressing by Mixture Experimental Design (혼합물 실험계획법에 의한 황도복숭아 드레싱 재료혼합비의 최적화)

  • Park, Jung Eun;Kim, Yong-Sik
    • Culinary science and hospitality research
    • /
    • v.23 no.7
    • /
    • pp.20-30
    • /
    • 2017
  • This study was conducted for the optimization of ingredients in salad dressing using Hwangdo peach (Prunus persica L. Batsch). The experiment was designed according to the D-optimal design of mixture design, which included 14 experimental points with 4 replicates for three independent variables (olive oil 40~65%, peach puree 27~50%, vinegar 8~20%). The linear regression models for pH, viscosity and color value and the quadratic regression models for emulsion stability, all sensory evaluation of the products were proven to be valid by the F-test for the overall significance of the regression model at a 5% level. Viscosity and pH of the products increased as olive oil content. Color value, viscosity and pH of the products increased as peach puree content. pH, viscosity, redness, and yellowness of the products decreased as vinegar content. Sensory evaluation result of the products showed that general preference for the products were increasingly affected by the increases in contents then decreased as they exceeded the optimum levels. In consequence, according to result from the first stage of the experiment, the optimum ingredients ratios of the raw materials were set in olive oil 52.43%, peach puree 35.07%, and vinegar 13.91% for ingredients of apricot dressing. These results provided the possibility that peach can be applied to the preparation of a dressing, and thereby present baseline data for the development of new dressings. This is also presumed to meet demands of customers who are always in pursuit of new products.

Shape Optimization of an Active Micro-Mixer for Improving Mixing Efficiency (혼합 효율 향상을 위한 마이크로 동적 믹서의 형상최적화)

  • Park, Jae-Yong;Kim, Sang-Rak;Lee, Won-Gu;Yoo, Jin-Sik;Kim, Young-Dae;Maeng, Joo-Seung;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.146-152
    • /
    • 2007
  • An active micro-mixer, which was composed of an oscillating micro-stirrer in the microchannel to provide rapid, effective mixing at high flow, rates was analyzed. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight microchannel and microchannel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an optimum design for a dynamic micro-mixer with an oscillating stirrer was performed using Taguchi method in order to obtain a robust solution. The design parameters were established as the frequency, the length and the angle of the stirrer and the optimal values were determined to be 2, 0.8D and ${\pm}75^{\circ}$, respectively. It was found that the mixing index of the optimal design increased 80.72% compared with that of the original design.

Design of 60-GHz Back-to-back Differential Patch Antenna on Silicon Substrate

  • Deokgi Kim;Juhyeong Seo;Seungmin Ryu;Sangyoon Lee;JaeHyun Noh;Byeongju Kang;Donghyuk Jung;Sarah Eunkyung Kim;Dongha Shim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.142-147
    • /
    • 2023
  • This paper presents a novel design of a differential patch antenna for 60-GHz millimeter-wave applications. The design process of the back-to-back (BTB) patch antenna is based on the conventional single-patch antenna. The initial design of the BTB patch antenna (Type-I) has a patch size of 0.66 × 0.98 mm2 and a substrate size of 0.99 × 1.48 mm2. It has a gain of 1.83 dBi and an efficiency of 94.4% with an omni-directional radiation pattern. A 0.4 mm-thick high-resistivity silicon (HRS) is employed for the substrate of the BTB patch antenna. The proposed antenna is further analyzed to investigate the effect of substrate size and resistivity. As the substrate resistivity decreases, the gain and efficiency degrade due to the substrate loss. As the substrate (HRS) size decreases approaching the patch size, the resonant frequency increases with a higher gain and efficiency. The BTB patch antenna has optimal performances when the substrate size matches the patch size on the HRS substrate (Type-II). The antenna is redesigned to have a patch size of 0.81 × 1.18 mm2 on the HRS substrate in the same size. It has an efficiency of 94.9% and a gain of 1.97 dBi at the resonant frequency of 60 GHz with an omni-directional radiation pattern. Compared to the initial design of the BTB patch antenna (Type-I), the optimal BTB patch antenna (Type-II) has a slightly higher efficiency and gain with a considerable reduction in antenna area by 34.8%.

  • PDF

Simulation Method for the Flowing Water Purification with UV Lamp (자외선램프을 이용한 유수처리장치 설계 시뮬레이션)

  • Jeong, Byeong-Ho;Lee, Kang-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.17-23
    • /
    • 2009
  • Interest in application of ultraviolet light technology for primary disinfection of potable water in drinking water treatment plants has increased significantly in recent years. The efficacy of disinfection processes in water purification systems is governed by several key factors, including reactor hydraulics, disinfectant chemistry, and microbial inactivation kinetics. The objective of this work was to develop a computational fluid dynamics(CFD) model to predict velocity fields, mass transport, chlorine decay, and microbial inactivation in a continuous flow reactor. The CFD model was also used to evaluate disinfection efficiency in alternative reactor designs. In a typical operation, water enters the inlet of a UV lamp and flows through the annular space between the quartz sleeve and the outside chamber wall. The irradiated water leaves through the outlet nozzle. In this paper, it describe the how to design optimal ultraviolet disinfection device for ground water and rainwater. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method, performed simulation and proved satisfied performance.