• Title/Summary/Keyword: D-Optimal design

Search Result 1,317, Processing Time 0.028 seconds

A New Algorithm to Calculate the Optimal Inclination Angle for Filling of Plunge-milling

  • Tawfik, Hamdy
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.193-198
    • /
    • 2006
  • Plunge milling is the fastest way to mill away large volumes of metal in the axial direction. The residual volume (inaccessible volume by the plungers) is minimized when selecting a specific direction of filling. This direction is known as the optimal inclination angle for filling of the plunged area. This paper proposes a new algorithm to calculate the optimal inclination angle of filling and to fill the plunged area with multi-plungers sizes. The proposed algorithm uses the geometry of the 2D area of the shape that being cutting to estimate the optimal inclination angle of filling. It is found that, the optimal inclination angle for filling of the plunged area is the same direction as the longer width of the equivalent convex polygon of the boundary contour. The results of the tested examples show that, the residual volume is minimized when comparing the proposed algorithm with the previous method.

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

A study of design on model following ${\mu}-$synthesis controller for optimal fuel-injection (최적 연료주입 모델 추종형 ${\mu}-$합성 제어기의 설계에 관한 연구)

  • Hwang, Hyun-Joon;Kim, Dong-Wan;Jeong, Ho-Seong;Son, Mu-Hun;Kim, Yeung-Hun;Hwang, Gi-Hyun;Mun, Kyeong-Jun;Park, June-ho;Hwang, Chang-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.163-169
    • /
    • 1998
  • In this paper, we design an optimal model following ${\mu}-$synthesis control system for fuel-injection of diesel engine which has robust performance and satisfactory command tracking performance in spite of uncertainties of the system. To do this, we give gain and dynamics parameters to the weighting functions and apply genetic algorithm with reference model to the optimal determination of the weighting functions that are given by the D-K iteration method which can design ${\mu}-$synthesis controller in the state space. These weighting functions are optimized simultaneously in the search domain which guarantees the robust performance of the system. The ${\mu}-$synthesis control system for fuel-injection designed by the above method has not only the robust performance but also a better command tracking performance than those of the ${\mu}-$synthesis control system designed by trial-and-error method. The effectiveness of this ${\mu}-$synthesis control system for fuel-injection is verified by computer simulation.

  • PDF

Maximum Torque Control of IPMSM Drive using Optimal Current (최적전류를 이용한 IPMSM 드라이브의 최대토크 제)

  • Baek, Jeong-Woo;Ko, Jae-Sub;Choi, Jung-Sik;Kang, Sung-Jun;Jang, Mi-Geum;Mun, Ju-Hui;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.57-58
    • /
    • 2010
  • This paper proposes maximum torque control of IPMSM drive using optimal current. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using multi-MFC and ANN controller. Also, this paper proposes maximum control of IPMSM drive using approximation method. This method is decreased the burden of digital signal process(DSP) in calculation of optimal current. This paper proposes the analysis results to verify the effectiveness of the MFC and ANN controller. Also it verifies the validity of maximum torque control of IPMSM drive with optimal current.

  • PDF

Development of a Tool for Automation of Analysis of a Spindle System of Machine Tools (공작기계 주축 시스템의 해석 자동화를 위한 툴 개발)

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.121-126
    • /
    • 2015
  • In this research, a tool was developed for the rapid performance of three-dimensional finite element analysis (3D FEA) of a machine tool spindle system made of a shaft and bearings. It runs the FEA with data, such as the bearing stiffness and the coordinates of the points, to define the section of the shaft, bearing positions, and cutting point. developed for the spindle system and then implemented with the tool using an object-oriented programing technique that allows the use of the objects of the CAD system used in this research. Graphic user interfaces were designed for a user to interact with the tool. It provides rapid evaluation of the design of a spindle system, and therefore, it would be helpful to identify a near optimal design of a spindle system based on, say, static stiffness with design changes and, consequently, FEA.

Structure Optimization FEA Code Development Under Frequency Constraints by Using Feasible Direction Optimization Method (유용방향법 최적화 알고리즘을 사용한 고유진동수에 대한 구조 최적설계 FEA 모듈 개발)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However in the most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleigh-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculates the optimal thickness and the thickness ratio of individual elements of the 2-D plane element through a parallel algorithm method which satisfy the design constraint of natural frequency. As a result this method of optimization for natural frequency by using finite element method can determine the optimal size or its ratio of geometrically complicated shape and large scale structure.

Finite Element Analysis on the Shaft Fitting to Inner Raceway of Radial Ball Bearing (레이디얼 볼베어링의 내륜 끼워맞춤에 관한 유한요소해석)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • The main goal of this paper is to establish an interference tolerance for determining optimal amount of clearance in the shaft-bearing system supported by radial ball bearings. The 2-D frictional contact model was employed for the FE analysis between the shaft and the inner raceway. Several examples were simulated using different material properties for the solid shaft. Efforts were focused on the deformation applied in the radial direction to select suitable bearings. The analysis results showed that the initial axial preload applied on the bearings plays a significant role to reduce bearing fatigue life. The proposed design parameters obtained by numerical simulations can approximately predict a rate of bearing life reduction as a function of shaft diameter ratio. This analysis can also be used to calculate the optimal initial radial clearance in order to obtain a shaft-bearing system design for high accuracy and long life.

  • PDF

OPTIMAL PREFORM DESGIN BY TRACING THE MATERIAL FLOW : APPLICATION TO PISTON FORGING

  • Hong J.T.;Lee S.R.;Park C.H.;Yang D.Y.;Chung W.J.;Park Y.B.;Kim Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.143-146
    • /
    • 2003
  • In this paper, a new preform design method is proposed to eliminate the excessive flash in metal forging process. After carrying out finite element simulation of the process with an initial billet, backward particle tracing is performed from the outlet of the flash. Then, the region which belongs to the flash is easily found .. The process is analyzed again with the redesigned billet which is removed that region the above mentioned region. The optimal preform shape which minimizes the amount of flash without changing the forgibility can be obtained in several iterations.

  • PDF

Shape Optimization of Axial Flow Fan Blade Using Surrogate Model (대리모델을 사용한 축류송풍기 블레이드의 형상 최적화)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2440-2443
    • /
    • 2008
  • This paper presents a three dimensional shape optimization procedure for a low-speed axial flow fan blade with a weighted average surrogate model. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations. Six variables from airfoil profile and lean are selected as design variables. 3D RANS solver is used to evaluate the objective functions of total pressure efficiency. Surrogate approximation models for optimization have been employed to find the optimal design of fan blade. A search algorithm is used to find the optimal design in the design space from the constructed surrogate models for the objective function. The total pressure efficiency is increased by 0.31% with the weighted average surrogate model.

  • PDF

Optimum Structural Design of Mid-ship Section of D/H Tankers Based on Common Structural Rules (CSR 을 활용한 이중선각유조선 중앙단면의 최적구조설계)

  • Na, Seung-Soo;Jeon, Hyoung-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • It is necessary to perform the research works on the general structural designs and optimum structural designs of double hull tankers and bulk carriers due to the newly built Common Structural Rules(CSR). In this study, an optimum structural design of a mid-ship part of double hull oil tanker was carried out by using the CSR. An optimum structural design program was developed by using the Pareto optimal based multi-objective function method. The hull weight and fabrication cost obtained by the single and multi-objective function methods were compared with existing ship by the consideration of CSR and material cost which is recently increasing.