• Title/Summary/Keyword: D-Optimal design

Search Result 1,317, Processing Time 0.031 seconds

Error-robust experimental designs: D- and heteroscedastic G-optimalities (D-와 이분산 G-최적을 중심으로 한 오차로버스트 실험계획법)

  • 김영일
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.303-309
    • /
    • 1993
  • In this paper we have defined two approaches to be error-robust when the precise form of error-structure is unknown. An experiment is optimal by the first criterion if it maximizes the minimum effciency over all candidates of error structure and is optimal by the second if it maximizes the minimum average of the efficiency over all candidates of error structure. In order to appreciate the basic implications of each design criterion, these approaches are applied to two different experimental situations, D- and heteroscedastic G-optimalities.

  • PDF

Automated design module generation system for parametric design (PARAMETRIC DESIGN을 위한 자동설계모듈 생성)

  • Lee, Seok-Hee;Bahn, Kab-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.236-247
    • /
    • 1993
  • An davanced method for the automatic generation of parametric models in computer- aided design systems is required for most of two-dimensional model which is represented as a set of geometric elements, and constraining scheme formulas. The development system uses geometric constraints and support of topology parameters from feature recognition and grouping the design entities into optimal ones from pre-designed drawings. The aim of this paper is to present guidelines for the application and development of parametric design modules for the standard parts in mechanical system, the basic constitutional part of mold base, and other 2D features.

  • PDF

Design and Characteristic Analysis for High-speed Interior Permanent Magnet Synchronous Motor with Ferrite Magnet (페라이트 영구자석을 갖는 고속 매입형 영구자석 전동기의 특성해석 및 설계)

  • Park, Hyung-Il;Shin, Kyung-Hun;Yang, Hyun-Sup;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1806-1812
    • /
    • 2016
  • We propose an interior permanent magnet syhchronous motor (IPMSM) with arc-shape ferrite permanent magnets (PMs) as a substitute for the rare-earth permanent magnet, and determine its optimal design through parametric study. First, we use 2D finite element analysis to analyze 4-poles and 6-slots initial model according to performance requirements and design parameters. The current angle of the maximum average torque considered in the analysis is different compared with the current angle of the minimum torque ripple. Thus, the parametric study for optimal rotor design is performed by varying the thickness and the offset radius of the PMs according to current angle. In particular, a narrow bridge is required in conventional IPMSM for reducing flux leakage; however, the increase in cogging torque in the analysis model saturates the narrow bridge (large offset radius). Therefore, we suggest an appropriate shape considering limiting conditions such as DC link voltage, average torque, torque ripple, and cogging torque taking into account performance requirements.

On the Design of a WiFi Direct 802.11ac WLAN under a TGn MIMO Multipath Fading Channel

  • Khan, Gul Zameen;Gonzalez, Ruben;Park, Eun-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1373-1392
    • /
    • 2017
  • WiFi Direct (WD) is a state of the art technology for a Device-to-Device (D2D) communication in 802.11 networks. The performance of the WD system can be significantly affected by some key factors such as the type of application, specifications of MAC and PHY layer parameters, and surrounding environment etc. It is, therefore, important to develop a system model that takes these factors into account. In this paper, we focus on investigating the design parameters of the PHY layer that could maximize the efficiency of the WD 802.11 system. For this purpose, a basic theoretical model is formulated for a WD network under a 2x2 Multiple In Multiple Out (MIMO) TGn channel B model. The design level parameters such as input symbol rate and antenna spacing, as well as the effects of the environment, are thoroughly examined in terms of path gain, spectral density, outage probability and Packet Error Rate (PER). Thereafter, a novel adaptive algorithm is proposed to choose optimal parameters in accordance with the Quality of Experience (QoE) for a targeted application. The simulation results show that the proposed method outperforms the standard method thereby achieving an optimal performance in an adaptive manner.

Robust multi-objective optimization of STMD device to mitigate buildings vibrations

  • Pourzeynali, Saeid;Salimi, Shide;Yousefisefat, Meysam;Kalesar, Houshyar Eimani
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.347-369
    • /
    • 2016
  • The main objective of this paper is the robust multi-objective optimization design of semi-active tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this system, it is required that the uncertainties which may exist in the system be taken into account. This consideration is performed through the robust design optimization (RDO) procedure. To evaluate the optimal values of the design parameters, three non-commensurable objective functions namely: normalized values of the maximum displacement, velocity, and acceleration of each story level are considered to minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum displacement, velocity, and acceleration of the building top story, respectively.

Design and Control Methods of Bidirectional DC-DC Converter for the Optimal DC-Link Voltage of PMSM Drive

  • Kim, Tae-Hoon;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1944-1953
    • /
    • 2014
  • This paper shows the design and control methods of the bidirectional DC-DC converter to generate the proper DC-link voltage of a PMSM drive. Conventionally, because the controllable power of the PWM based voltage source inverter is limited by its DC-link voltage, the DC-DC converter is used for boosted DC-link voltage if the inverter source cannot generate enough operating voltage for the PMSM drive. In this paper, to obtain more utilization of this DC-DC converter, optimal DC-link voltage control for PMSM drive will be explained. First, the process and current path of the DC-DC converter will be illustrated, and a control method of this converter for variable DC-link voltage will then be explained. Finally, an improvement analysis of the optimal DC-link voltage control method, especially on the deadtime effect, will be explained. The DC-DC converter of the proposed control method is verified by the experiments by comparing with the conventional constant voltage control method.

Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm

  • Grzywinski, Maksym;Selejdak, Jacek;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.747-753
    • /
    • 2019
  • Metaheuristic algorithm is used to solve the weight minimization problem of truss structures considering shape, and sizing design variables. The cross-sectional areas of the line element in trusses are the design variables for size optimization and the changeable joint coordinates are the shape optimization used in this study. The design of plane and spatial truss structures are optimized by metaheuristic technique named Teaching-Learning-Based Optimization (TLBO). Finite element analyses of structures and optimization process are carried out by the computer program visually developed by the authors coded in MATLAB. The four benchmark problems (trusses 2D ten-bar, 3D thirty-seven-bar, 3D seventy-two-bar and 2D two-hundred-bar) taken from literature are optimized and the optimal solution compared the results given by previous studies.

3D Shape Optimization of Nonlinear Electromagnetic Device Using Parameterized Sensitivity Analysis (매개화된 민감도 해석에 의한 비선형 전자소자의 3차원 형상최적화)

  • ;Yingying Yao
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.469-476
    • /
    • 2004
  • In this paper, a 3D shape optimization algorithm which guarantees a smooth optimal shape is presented using parameterized sensitivity analysis. The design surface is parameterized using Bezier spline and B-spline, and the control points of the spline are taken as the design variables. The parameterized sensitivity for the control points are found from that for nodal points. The design sensitivity and adjoint variable formulae are also derived for the 3D non-linear problems. Through an application to the shape optimization of 3D electromagnet to get a uniform magnetic field, the effectiveness of the proposed algorithm is shown.