• Title/Summary/Keyword: D-Galactose

Search Result 243, Processing Time 0.024 seconds

4-Deoxy-Analogs of p-Nitrophenyl $\beta$-D-Galactopyranosides for Specificity Study with $\beta$-Galactosidase from Escherichia coli

  • 윤신숙;김형근;전근호;신정남
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.599-604
    • /
    • 1996
  • The synthesis is reported of p-nitrophenyl glycosides of D-galactose modified at C-4 with azido- (5), amino- (6) group and fluorine (13). 4-Azido-2,3,6-tri-O-benzoyl-4-deoxy-α-D-galactopyranosyl chloride and 2,3,6-tri-O-benzoyl-4-deoxy-4-fluoro-α-D-galactopyranosyl bromide were coupled with potassium p-nitrophenoxide in the presence of 18-crown-6 giving the corresponding p-nitrophenyl 4-azido-and 4-fluoro-4-deoxy-β-D-galactopyranoside derivatives. p-Nitrophenyl 4-amino-4-deoxy-β-D-galactopyranoside (6) was obtained by selective reduction of p-nitrophenyl 4-azido-4-deoxy-β-D-galactopyranoside (5) using 1,3-propane dithioltriethylamine. These galactoside analogs were slowly hydrolyzed in the increasing rate order of 5, 6 and 13 by β-galactosidase from Escherichia coli.

Screening of Hemicellulose Oligosaccharides and Preparation of the Recipe for Modified MRS Medium by the Replacement of Carbon Source (Hemicellulose계열 올리고당 탐색 및 탄소원 대체에 의한 장내세균 생육활성용 신규 MRS배지의 조제)

  • Lee, Hee-Jung;Park, Gwi-Gun
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.272-276
    • /
    • 2008
  • Purification and some properties of Xylogone sphaerospora ${\beta}$-mannanase were reprevious previous paper. Locust bean gum galactomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 4 and 6 galactosyl mannooligosaccharides. For elucidate the structure of D.P 4 and 6 galactosyl mannooligosaccharides, sequential enzymatic action was performed. D.P 4 and 6 were identified as ${Gal^2}{Man_3}\;(6^2-mono-O-{\alpha}-D-galactopyranosyl-4-O-{\beta}-D-mannotriose)$ and ${Gal^2}{Man_5}\;(6^2-mono-O-{\alpha}-D-galacto- pyranosyl-4-O-{\beta}-D-mannopentaose)$. To investigate the effects of locust bean gum galactosyl mannooligosaccharides on in vitro growth of Bifidobacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 4 and D.P. 6 galactosyl mannooligosaccharides, respectively. B. longum and B. bifidum grew up to-fold and 6.6-fold more effectively by the treatment of D.P. 6 galactosyl mannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 6 was more effective than D.P. 4 galactosyl mannooligosaccharide on the growth of Bifidobacterium spp.

Purification and Biochemical Characterization of Lectin from Viscum album (겨우살이 Lectin의 정제 및 생화학적 특성)

  • Jang, Cheol-Su;O, Mi-Jeong;No, Gwang-Su
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.578-584
    • /
    • 1999
  • The lectin was purified through 0.15 M NaCl extraction, ammonium sulfate precipitation, sepharose 4B affinity chromatography and gel filtration using sephadex G-150 from the leaves of Visum album collected in Mt. Duk Yu. The final gel filtration step resulted in 11.64 folds purification with 0.14% of recovery yield. We also performed biochemical characterization of the purified Visum album lectin. HPLC analysis of lectin purified by gel filtration revealed a singel peak. The analysis of the purified lectin by SDS-PAGE showed a tetramer composed of two identical subunits with molecular weights of 32 and 30 kDa. The lectin was a glycoprotein containing 14.4% carbohydrate, which consist of glucose, fructose, arabinose and xylose, and the amino acids such as phenylalanine, lysine and tyrosine. The purified lectin agglutinated human red blood cell types with similar potency, but when tested against red blood cells from mouse, bovine, rabbit, chicken and porcine, significant difference in potency were observed. Hemaggluting activity was inhibited by D-galactose, D-mannose, D-lactose and D-raffinose, but not by D-glucose, D-glucosamine, D-mannosamine, L-fructose, D-xylose, D-arabinose, D-galacturonic acid, D-fructose, L-rhamnose and N-acetyl-D-galactosamine. The optimal pH and thermal stability of the purified lectin were pH 4.0-7.0 and 20-5$0^{\circ}C$, respectively.

  • PDF

Phospho-$\beta$-galactosidase gene located on plasmid in lactobacillus casei (플라스미드에 존재하는 lactobacillus casei의 phospho-$\beta$-galactosidases 유전자)

  • 문경희;박정희;최순영;이유미;김태한;하영칠;민경희
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.181-187
    • /
    • 1989
  • Plasmid DNA was isolated from Lactobacillus casei SW-M1($Lac^{+}$strain). The curing frequencies of pPLac plasmid from L. casei SW-M1 showed 43% for acriflavin treatment and 53% for ethidium bromide treatment after 3 times transfer. On the charaterization of pPLac plasmid, it was found that the plasmid contained gene encoding phospho-$\beta$-galactosidase for lactose utilization. Lactose-PTS(phosphotransferase system)was involved in membrane transport system in $Lac^{+}$ strain. Induction of phospho-$\beta$-galactosidase was specially effective by galactose, lower effect with lactose and glucose but not by IPTG(isopropyl-$\beta$-D-thiogalactoside). This result showed that induction of phospho-$\beta$-galactosidase by IPTG did not appeared. The catabolite repression of phospho-$\beta$-galactosidase synthesis by glucose was not found in L. casei.

  • PDF

Putative Bax inhibitor from rice a conserved cell death suppressor, is isolated by yeast functional screening (효모 기능 선발을 이용한 벼의 세포사유발을 억제하는 유전자 선발)

  • Lee, Gyu Ho;Son, Ye Jin;Sawitri, Widhi Diya;Sohn, Jae-Keu;Kim, Kyung-Min
    • Current Research on Agriculture and Life Sciences
    • /
    • v.29
    • /
    • pp.37-42
    • /
    • 2011
  • The plant-homologue of Bax Inhibitor, a gene described to suppress the cell death induced by Bax gene expression in yeast, was isolated from rice (Oryza sativa L.). Nucleic acid sequence and amino acid sequence were 741 bp and 247 bp, respectively. The amino acid sequence of the predicted protein was well conserved in plant (84 % in amino acids) and contained five membrane-spanning segments.

  • PDF

Molecular Characterization of the α-Galactosidase SCO0284 from Streptomyces coelicolor A3(2), a Family 27 Glycosyl Hydrolase

  • Temuujin, Uyangaa;Park, Jae Seon;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1650-1656
    • /
    • 2016
  • The SCO0284 gene of Streptomyces coelicolor A3(2) is predicted to encode an α-galactosidase (680 amino acids) belonging to glycoside hydrolase family 27. In this study, the SCO0284 coding region was cloned and overexpressed in Streptomyces lividans TK24. The mature form of SCO0284 (641 amino acids, 68 kDa) was purified from culture broth by gel filtration chromatography, with 83.3-fold purification and a yield of 11.2%. Purified SCO0284 showed strong activity against p-nitrophenyl-α-D-galactopyranoside, melibiose, raffinose, and stachyose, and no activity toward lactose, agar (galactan), and neoagarooligosaccharides, indicating that it is an α-galactosidase. Optimal enzyme activity was observed at 40℃ and pH 7.0. The addition of metal ions or EDTA did not affect the enzyme activity, indicating that no metal cofactor is required. The kinetic parameters Vmax and Km for p-nitrophenyl-α-D-galactopyranoside were 1.6 mg/ml (0.0053 M) and 71.4 U/mg, respectively. Thin-layer chromatography and mass spectrometry analysis of the hydrolyzed products of melibiose, raffinose, and stachyose showed perfect matches with the masses of the sodium adducts of the hydrolyzed products, galactose (M+Na, 203), melibiose (M+Na, 365), and raffinose (M+Na, 527), respectively, indicating that it specifically cleaves the α-1,6-glycosidic bond of the substrate, releasing the terminal D-galactose.

Curcumin and hesperetin attenuate D-galactose-induced brain senescence in vitro and in vivo

  • Lee, Jihye;Kim, Yoo Sun;Kim, Eunju;Kim, Yerin;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.14 no.5
    • /
    • pp.438-452
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Brain senescence causes cognitive impairment and neurodegeneration. It has also been demonstrated that curcumin (Cur) and hesperetin (Hes), both antioxidant polyphenolic compounds, mediate anti-aging and neuroprotective effects. Therefore, the objective of this study was to investigate whether Cur, Hes, and/or their combination exert anti-aging effects in D-galactose (Dg)-induced aged neuronal cells and rats. MATERIALS/METHODS: SH-SY5Y cells differentiated in response to retinoic acid were treated with Cur (1 μM), Hes (1 μM), or a combination of both, followed by 300 mM Dg. Neuronal loss was subsequently evaluated by measuring average neurite length and analyzing expression of β-tubulin III, phosphorylated extracellular signal-regulated kinases, and neurofilament heavy polypeptide. Cellular senescence and related proteins, p16 and p21, were also investigated, including their regulation of antioxidant enzymes. In vivo, brain aging was induced by injecting 250 mg/kg body weight (b.w.) Dg. The effects of supplementing this model with 50 mg/kg b.w. Cur, 50 mg/kg b.w. Hes, or a combination of both for 3 months were subsequently evaluated. Brain aging was examined with a step-through passive avoidance test and apoptosis markers were analyzed in brain cortex tissues. RESULTS: Cur, Hes, and their combination improved neuron length and cellular senescence by decreasing the number of β-gal stained cells, down-regulated expression of p16 and p21, and up-regulated expression of antioxidant enzymes, including superoxide dismutase 1, glutathione peroxidase 1, and catalase. Administration of Cur, Hes, or their combination also tended to ameliorate cognitive impairment and suppress apoptosis in the cerebral cortex by down-regulating Bax and poly (ADP-ribose) polymerase expression and increasing Bcl-2 expression. CONCLUSIONS: Cur and Hes appear to attenuate Dg-induced brain aging via regulation of antioxidant enzymes and apoptosis. These results suggest that Cur and Hes may mediate neuroprotective effects in the aging process, and further study of these antioxidant polyphenolic compounds is warranted.

Isolation, Identification and Mutant Development of Butanol Tolerance Bacterium (부탄올 내성 미생물의 분리, 동정 및 변이주의 개발)

  • Jung, Hyesook;Lee, Jinho
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.26-32
    • /
    • 2013
  • Butanol-resistant bacteria were isolated from butanol solvent. The cell growth of isolated strains declined with increasing concentrations of butanol, and isolated strain BRS02 displayed more resistance to 12.5 g/L of butanol than other isolated strains. In addition, strain BRS251, which was resistant to even higher concentrations of butanol, was developed by the mutation of BRS02 using UV. BRS251 could grow in LB medium containing up to 17.5 g/L of butanol, 32.5 g/L of propanol, or 6 g/L of pentanol, whereas the control strain Escherichia coli was found to be tolerant to 7.5 g/L of butanol, 20 g/L of propanol, or 2 g/L of pentanol. The isolated BRS02, a Gram(+) bacterium seen to have a cocci form under the microscope, grew in 6.5% NaCl. According to biochemical tests, BRS02 can metabolize and produce acid with D-galactose, D-maltose, D-mannitol, D-mannose, methyl-${\beta}$-Dglucopyranoside, D-ribose, sucrose, or D-trehalose, as carbon sources. Also, this strain showed resistance to bacitracin, vibriostatic agent O/129, and optochin, alongside positive activities for arginine dihydrolase, ${\alpha}$-glucosidase, and urease. The BRS02 strain was identified as Staphylococcus sp. by analyses of the 16S rRNA gene, phylogenetic tree, and biochemical tests.

Characterization of a Novel Lipopolysaccharide Biosurfactant from Klebsiella oxitoca

  • Kim, Pil;Kim, Jung-Hoe
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.494-499
    • /
    • 2005
  • The chemical, physical, and emulsifying properties of BSF-1, which is an extracellular lipopolysaccharide biosurfactant produced by Klebsiella oxytoca strain BSF-1, were studied. BSF-1 was found to be composed mainly of carbohydrate and fatty acids. The average molecular weight was $1,700{\sim}2,000 kDa$. The polysaccharide fraction contained L-rhamnose, D-galactose, D-glucose, and D-glucuronic acid at a molar ratio of 3:1: 1:1. The fatty acid content was 1.1 % (w/w) and consisted mainly of palmitic acid (C16:0), 3-hydroxylauric acid (3-OH-C12:0), and lauric acid (C12:0). In terms of thermal properties, BSF-1 was revealed to have inter- and intra-molecular hydrogen bonds. The hydrodynamic volume (intrinsic viscosity) of BSF-1 was 22.8dL/g. BSF-1 could be maintained as a stable emulsion for 48 h through a low-level reduction in surface tension. The optimal emulsification temperature was $30^{\circ}C$. Emulsification by BSF-1 was efficient at both acidic and neutral pH values.