• Title/Summary/Keyword: D-Band

Search Result 4,413, Processing Time 0.027 seconds

Design of Wideband Ku-band Low Noise Down-converter for Satellite Broadcasting (Ku-band 광대역 위성방송용 LNB 설계)

  • Hong, Do-Hyeong;Mok, Gwang-Yun;Park, Gi-Won;Rhee, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.941-944
    • /
    • 2015
  • In this paper study for VSAT(very small aperture terminal) LNB(low noise block). ship LNB was demanded high stability and low noise figure. We designed FEM(Front-End Module) that was operated multi-band. FEM designed was constructed in a multi-band low noise receiver amplifier, a frequency converter, IF amplifier, Voltage Control Oscillator signal generating circuit four circuit using. To convert the multi-band 2.05GHz band, it generates four local oscillator signals, the four(band1, band2, band3, band4) designed to output an IF signal developed conversion apparatus, the conversion gain 64dB, noise figure 1dB or less, output P1dB 15dBm or more, phase noise showed -73dBc@100Hz.

  • PDF

Investigation of Pump Wavelength Dependence of Long-Wavelength-Band Erbium-Doped Fiber Amplifier using 1530nm-Band Pump (L 대역 EDFA 특성의 펌프 파장 의존성에 관한 연구)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1249-1255
    • /
    • 2008
  • 1530nm band has been studied as pump wavelength for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA). The pump source is built using a tunable light source and cascaded conventional-band (C-band) EDFA. The L-band EDFA uses a forward pumping scheme. Within the 1530nm band, 1545nm pump demonstrates 0.45dB/mW gain coefficient, which is twice better than that of conventional 1480nm pumped EDFA. The noise figure of 1530nm pump is at worst 6.36dB, which is 0.75dB higher than that of 1480nm pumped EDFA. Such high gain coefficient indicates that the L-band EDFA consumes low power.

Design and Implementation of BPF Using a Symmetric Coupled Line (대칭형 결합선로를 이용한 BPF의 설계 및 구현)

  • Kang, Sang-Gee;Choi, Heung-Taek;Lee, Jae-Myung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1255-1260
    • /
    • 2009
  • Microstrip interdigital filter is designed with the width and length of a resonator, the gap distance between resonators and the location of a tap. When designing filters, it is a benefit to design with few design parameters comparing to many design parameters. In this paper we design and implement two microstrip interdigital filters operating in the UWB(Ultra Wide-Band) frequency band, one using a fixed width of a resonator and the other using a different width of resonators. The test results of the implemented filters show that the low-band high filter with a fixed width has the insertion loss of 1.49dB, -10dB band width of 720MHz, -35.7dBattenuation at 4.8GHzand below -13dB of S11. The filter with a different width of resonators has the insertion loss of 1.6dB, -10dBbandwidth of 1.63GHz and below-8dBof S11.

Development of the Multi Band Transceiver for Multi-Channel SAR (다채널 영상레이다를 위한 다중대역 송수신기 개발)

  • Kim, Jae-Min;Lim, Jae-Hwan;Park, Ji-Woong;Jin, Hyeong-Seok;Lee, Hyeon-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In this paper, we designed and fabricated the multi band Transceiver Assembly(TCA) for the Multi Channel Synthetic Aperture Radar(MCSAR) containing C-band, X-band, Ku-band and we researched to verify electrical performance of TCA. The transceiver consists of transmitters, receivers, signal selection modules for each band, and stability oscillator, frequency synthesizer, controller, power distributor. The transceiver has a receive path selection and bandwidth selection functions in accordance with the operating mode. And the transceiver can transmit and receive all three bands simultaneously, each band has a bandwidth of up to 300 MHz. Final transmission output of transceiver for each band is over 20 dBm to be suitable for driving the T/R module. Receiver bandwidth is selected according to the required function and receiver gain has approximately C-band 52 dB, X-band 50 dB, Ku-band 60 dB, the maximum noise figure of Ku-band V polarization is 4.28 dB in the whole band H, V polarization. As a result of the electrical performance test, a multi-band TCA is satisfied the property requirements of the MCSAR.

A Study on the Amplification Block for Integrated Antenna Module Applicable to Vehicles (차량용 통합 안테나 모듈용 증폭단에 관한 연구)

  • Go, Min-Ho;Pyo, Seung-Chul;Park, Hyo-Dal
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • In this paper, we designed and fabricated the active amplification block for the integrated antenna module. The fabricated amplification module have a proper gain and low noise figure in the band of AM/FM band, T-DMB band and GPS band, and show good isolation performance for each band. Manufactured circuits satisfied the gain performance 7 dB in AM band, 11 dB in FM band, 10 dB in T-DMB, and 17 dB in GPS band. The integrated amplification block was realized by 35 mm*35 mm size, and was shown as the same sensitivity performance as compared with a conventional reference antennas.

  • PDF

A Simple Dual Band Filter Design with 0603 Case Size using IPD Technology for 1.8 GHz and 2.5 GHz DC-block Application

  • Li, De-Zhong;Wang, Cong;Kyung, Gear Inpyo;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.385-386
    • /
    • 2008
  • In this paper, a simple dual band filter chip is designed with 0603 case size using IPD technology. The dual-band filter achieves high frequency band at 2.5 GHz and low frequency band at 1.8 GHz. The insertion losses in high frequency band and low frequency band are -0.195 dB and -0.146 dB, respectively. The return losses in these bands are -22.7 dB and -22.8 dB, respectively. The simple dual-band filter based on SI-GaAs substrate is designed within die size of about 1.3 $mm^2$.

  • PDF

T-shaped Microstrip Monopole Antenna with a Pair of Slits for Dual-Band Operation (슬릿쌍을 이용한 이중 대역 T-형 마이크로스트립 모노폴 안테나)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.759-763
    • /
    • 2011
  • In this paper, a dual-band T-shaped microstrip monopole antenna with a pair of slits for 2.4/5.2/5.8-GHz wireless local area networks (WLANs) is proposed. A pair of T-shaped slits is loaded on a T-shaped monopole antenna fed by microstrip line in order to obtain dual-band operation as well as to reduce the antenna size. It is demonstrated from experimental results that the proposed antenna can cover all the required bands for WLAN. The measured impedance bandwidth for VSWR<2 is about 5.7% (2.37-2.51GHz) in the lower frequency band and about 28.8% (4.76-6.35GHz) in the higher frequency band. The measured peak gains are about 1.33 dBi to 1.66 dBi in the 2.4GHz band, 3.50 dBi to 3.95 dBi in the 5.25GHz band, and 2.06 dBi to 2.34 dBi in the 5.8GHz band.

An Extended L-band Erbium-doped Fiber Amplifier to Amplify 1625 nm OTDR Signal for a Long Distance Monitoring System (장거리 광선로 감시용 1625 nm OTDR 신호 증폭을 위한 효율적인 Extended L-band Erbium-doped Fiber Amplifier)

  • Lee, Han-Hyub;Seo, Dae-Dong;Lee, Dong-Han;Choi, Hyun-Beom;Jeon, Jeon-Gu
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.411-416
    • /
    • 2005
  • We have designed an extended L-band Erbium-doped fiber amplifier to amplify 1625 nm optical time domain reflectometry signal for a long distance monitoring system. The proposed amplifier has a dual-stage structure without an isolator. Gain improvement of 5.1 dB has been achieved by adding a fiber Bragg grating and a narrow band pass filter. As a result, the 16.3 dB gain and 7.1 dB noise figure has been successfully accomplished.

Quad-Band RF CMOS Power Amplifier for Wireless Communications (무선 통신을 위한 Quad-band RF CMOS 전력증폭기)

  • Lee, Milim;Yang, Junhyuk;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.807-815
    • /
    • 2019
  • In this paper, we design a power amplifier to support quad-band in wireless communication devices using RF CMOS 180-nm process. The proposed power amplifier consists of low-band 0.9, 1.8, and 2.4 GHz and high-band 5 GHz. We proposed a structure that can support each input matching network without using a switch. For maximum linear output power, the output matching network was designed for impedance conversion to the power matching point. The fabricated quad-band power amplifier was verified using modulation signals. The long-term evolution(LTE) 10 MHz modulated signal was used for 0.9 and 1.8 GHz, and the measured output power is 23.55 and 24.23 dBm, respectively. The LTE 20 MHz modulated signal was used for 1.8 GHz, and the measured output power is 22.24 dBm. The wireless local area network(WLAN) 802.11n modulated signal was used for 2.4 GHz and 5.0 GHz. We obtain maximum linear output power of 20.58 dBm at 2.4 GHz and 17.7 dBm at 5.0 GHz.

A Dual-Mode Mixer for Multi-Band Radar Signal Reception (다중 대역 레이더 신호 수신을 위한 이중 모드 주파수 혼합기)

  • Go, Min-Ho;Kim, Hyoung-Joo;Nah, Sun-Phil;Kim, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1047-1054
    • /
    • 2013
  • In this paper, we propose a dual-mode mixer to have multi-band radar signal receiver to be compact. The proposed mixer using a anti-parallel diode is operated as a fundamental mixer or sub-harmonic mixer with respect to a control voltage. A fundamental mixer with a control voltage show a conversion loss of -10 dB, 1dB compression point of 2 dBm at X-band. On the other hand, it is performed as a sub-harmonic mixer with a conversion loss of -10 dB, 1 dB compression point of 2 dBm at K-band.