• Title/Summary/Keyword: D-Band

Search Result 4,421, Processing Time 0.026 seconds

1.6 Tb/s (160x10 Gb/s) WDM Transmission over 2,000 km of Single Mode Fiber (1.6 Tb/s (160x10 Gb/s) WDM 신호의 단일 모드 광섬유 2,000 km 전송)

  • 한진수;장순혁;이현재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.712-718
    • /
    • 2004
  • We report 1.6 Tb/s (160${\times}$10 Gb/s) WDM transmission over 2,000 km of single mode fiber using distributed hybrid(distributed Raman amplifier+Erbium-doped fiber amplifier) optical amplifiers. After transmission over 2,000 km of single mode fiber, average optical signal to noise ratios of C/L-band were 20.5 dB, 21.9 dB, respectively. The minimum Q-factors of each band were 14.65 dB (BER=5.8e-8) in C-band, 13.75 dB (BER=5.0e-7) in L-band without forward error correction. We performed 1.6 Tb/s error-free transmission over 2,000 km of single mode fiber using Reed-Solomon (255, 239) forward error correction code.

Design of Dual-band Power Amplifier using CRLH of Metamaterials (메타구조의 CRLH를 이용한 이중대역 전력증폭기 설계)

  • Ko, Seung-Ki;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.78-83
    • /
    • 2010
  • In this paper, a novel dual-band power amplifier using metamaterials has been realized with one RF GaN HEMT diffusion metal-oxide-semiconductor field effect transistor. The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. We have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 900 MHz and 2140 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 900 MHz and 2140 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) and IMD of 60.2 %, -23.17dBc and 67.3 %, -25.67dBc at two operation frequencies, respectively.

Design and fabrication of SSPA module in X-band for Radar (X-대역 레이더용 SSPA 모듈 설계 및 제작)

  • Yang, Seong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.943-948
    • /
    • 2018
  • In this paper, SSPA Module for X-band radar was designed and fabricated by using GaN MMIC. For the purpose of configuring the high power SSPA module, the drive steamers are composed of 2-layers of GaN MMIC with considering Gain Loss. In addition, the power divider and power combiner used a 4way approach by designing a 4-stage power amplifier. The power divider has a loss of -3.0dB or more, and the I/O has a loss of -0.2dB in the power combiner and the phase difference between the ports are good at $2^{\circ}$ on average. The fabricated SSPA module got the measurement results that satisfy a Gain 48dB, P(sat)=88.3W(49.46 dBm), PAE=30.3% or more efficiency in condition of frequency range 9~10GHz. The fabricated X-Band SSPA module can be applied in RF performance improvement for SSPA module whit improvement of power divider/combiner.

Structure optimization of a L-band erbium-doped fiber amplifier for 64 optical signal channels of 50 GHz channel spacing (50 GHz 채널 간격의 64 채널 광신호 전송을 위한 L-band EDFA의 구조 최적화)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1666-1671
    • /
    • 2022
  • The structure of a high-power gain-flattened long wavelength band (L-band) optical amplifier was optimized, which was implemented for 64-channel wavelength division multiplexed optical signals with a channel spacing of 50 GHz. The output characteristics of this L-band amplifier were measured and analyzed. The amplifier of the optimized two-stage amplification configuration had a flattened gain of 20 dB within 1 dB deviation between 1570 and 1600 nm for -2 dBm input power condition. The noise figure under this condition was minimized to within 6 dB in the amplification bandwidth. The gain flattening was realized by considering only the characteristics of gain medium in the amplifier without using additional optical or electrical devices. The proposed amplifier consisted of two stages of amplification stages, each of which was based on the erbium-doped fiber amplifier (EDFA) structure. The erbium-doped fiber length and pumping structures in each stage of the amplifier were optimized through experiments.

Development of the Ka-band Frequency Synthesizer and Receiver based on MMIC (MMIC 기반 Ka대역 주파수합성기 및 수신기 개발)

  • Mihui, Seo;Hae-Chang, Jeong;Kyoung-Il, Na;Sosu, Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.123-129
    • /
    • 2023
  • In this paper, the frequency synthesis(FS) MMIC and the receive MMICs were developed for a Ka-band compact radar. Also a compact Ka-band frequency synthesizer and a receiver were developed based on those MMICs. The FS MMIC and the wireless-receiver(WR) MMIC to receive the baseband frequency were manufactured by a 65 nm CMOS process and the front-end(FE) MMIC to receive the Ka-band frequency was manufactured by a 150 nm GaN process. Linear frequency modulation waveform and pulse waveform for the transmit signal were measured by output signal of frequency synthesizer. The measured performance of developed receiver including the FE MMICs and the WR MMIC were ≧ 80 dB gain, ≦ 6 dB noise figure and ≧ 10 dBm at OP1dB. The measurement results of the developed frequency synthesizer and the receiver including the manufactured MMICs showed that they could be applied to Ka-band compact radar.

Design of the RF Front-end for L1/L2 Dual-Band GPS Receiver (L1/L2 이중-밴드 GPS 수신기용 RF 전단부 설계)

  • Kim, Hyeon-Deok;Oh, Tae-Soo;Jeon, Jae-Wan;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1169-1176
    • /
    • 2010
  • The RF front-end for L1/L2 dual-band Global Positioning System(GPS) receiver is presented in this paper. The RF front-end(down-converter) using low IF architecture consists of a wideband low noise amplifier(LNA), a current mode logic(CML) frequency divider and a I/Q down-conversion mixer with a poly-phase filter for image rejection. The current bleeding technique is used in the LNA and mixer to obtain the high gain and solve the head-room problem. The common drain feedback is adopted for low noise amplifier to achieve the wideband input matching without inductors. The fabricated RF front-end using $0.18{\mu}m$ CMOS process shows a gain of 38 dB for L1 and 41 dB for L2 band. The measured IIP3 is -29 dBm in L1 band and -33 dBm in L2 band, The input return loss is less than -10 dB from 50 MHz to 3 GHz. The measured noise figure(NF) is 3.81 dB for L1 band and 3.71 dB for L2 band. The image rejection ratio is 36.5 dB. The chip size of RF front end is $1.2{\times}1.35mm^2$.

Receiver for Ku-band Compact Doppler Radar (Ku-대역 소형 도플러 레이다용 수신부)

  • Lee, Man-Hee;An, Se-Hwan;Kim, Youn-Jin;Kim, Hong-Rak;Jeong, Hae-Chang;Kim, Sun-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.89-93
    • /
    • 2020
  • In this paper, Ku-band Receiver for compact doppler radar has been designed and fabricated. It composed of MWR(Microwave Receiver) and IFR(Intermediate Frequency Receiver) which have 5 receive path. We applied limiter circuit to protect MWR from Tx leakage power and maximum 2 W. IFR can change the Rx path to broad band or narrow band by MSC(Mode Selection Switch). It is observed that fabricated receiver performs 68 dB gain and 3.7 dB noise figure, 93 ns limiter recovery time. Proposed Ku-band receiver is expected to apply for Ku-band compact doppler radar.

Design of Life-jacket Integrated Multiband Antenna for Rescuing Distressed People (조난자의 구조를 위한 구명조끼 장착 다중대역 안테나 설계)

  • Park, Yong-Jin;Yang, Gyu-Sik;Jung, Sung-Hun;Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.473-478
    • /
    • 2015
  • In this paper, we suggest a flexible multiband antenna which can be equipped on an inflatable life-jacket. The antenna can send distress alert and location data of survivors to assist rescue operation when crew or people are in distress. The antenna operate in three frequency bands such as VHF-DSC band (156MHz), COSPAS-SARSAT band (406MHz) and GPS band (1,575MHz). The GPS band is implemented with a square ring-slot planar antenna, the COSPAS-SARSAT band and the VHF-DSC band antenna is implemented by monopole type. In order to give flexibility of substrate to be equipped on life-jacket, FR4-epoxy substrate of thickness 0.2mm is used to make antenna. The reflection coefficients of the fabricated antenna are -8.8dB, -20.4dB and -10.7dB at each bandwidth like VHF-DSC, COSPAS-SARSAT and GPS band, respectively, when people are wearing life-jacket integrated multiband antenna.

A X-band 40W AlGaN/GaN Power Amplifier MMIC for Radar Applications (레이더 응용을 위한 X-대역 40W AlGaN/GaN 전력 증폭기 MMIC)

  • Byeong-Ok, Lim;Joo-Seoc, Go;Keun-Kwan, Ryu;Sung-Chan, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.722-727
    • /
    • 2022
  • In this paper, we present the design and characterization of a power amplifier (PA) monolithic microwave integrated circuit (MMIC) in the X-band. The device is designed using a 0.25 ㎛ gate length AlGaN/GaN high electron mobility transistor (HEMT) on SiC process. The developed X-band AlGaN/GaN power amplifier MMIC achieves small signal gain of over 21.6 dB and output power more than 46.11 dBm (40.83 W) in the entire band of 9 GHz to 10 GHz. Its power added efficiency (PAE) is 43.09% ~ 44.47% and the chip dimensions are 3.6 mm × 4.3 mm. The generated output power density is 2.69 W/mm2. It seems that the developed AlGaN/GaN power amplifier MMIC could be applicable to various X-band radar systems operating X-band.

Dual Band Antenna of 433 MHz and 920 MHz for Marine Buoy (해양 부이용 433 MHz와 920 MHz 이중 대역 안테나)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.523-529
    • /
    • 2021
  • This paper shows the design and fabrication of antenna embedded in marine buoy for marine IoT service, especially automatic identification system of fishing gears. Frequency band of proposed antenna has dual band of 433 MHz and 920 MHz considering marine IoT extension. Dual pattern monopole type for 920 MHz and meander type for 433 MHz are adopted in the proposed antenna. Voltage standing wave ratio is obtained 1.548 at 433 MHz and obtained 1.5 of mean value at 920 MHz band by measuring the fabricated antenna. The maximum antenna gain of 3.83 dBi is measured at 902 MHz among 920 MHz band, while antenna gain of 433 MHz is obtained 1.18 dBi. Although antenna gain of 433 MHz is low than 920 MHz band, this gain is larger than desired value of -5 dBi. And, it is confirmed that other measured values meet the performance criteria for archiving communication distance of 10 km between marine buoy and fishing ship in automatic identification system of fishing gears.