• Title/Summary/Keyword: D-(-)-lactic acid

Search Result 504, Processing Time 0.022 seconds

Effect of Low Salt Concentrations on Microbial Changes During Kimchi Fermentation Monitored by PCR-DGGE and Their Sensory Acceptance

  • Ahmadsah, Lenny S. F.;Min, Sung-Gi;Han, Seon-Kyeong;Hong, Yeun;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2049-2057
    • /
    • 2015
  • Various salt concentrations (1.0%, 1.3%, 1.6%, 1.9%, and 2.1% labeled as sample A, B, C, D, and E, respectively) were investigated for microbial diversity, identification of Lactic Acid Bacteria (LAB) in salted kimchi cabbage, prepared under laboratory conditions. These samples were stored at 4°C for 5 weeks in proper aluminum-metalized pouch packaging with calcium hydroxide gas absorber. A culture-independent method known as polymerase chain reaction - denaturing gradient gel electrophoresis was carried out to identify LAB distributions among various salt concentration samples that had identified 2 Weissella (W. confusa and W. soli), 1 Lactobacillus (Lb. sakei), and 3 Leuconostoc (Lc. mesenteroides, Lc. lactis, and Lc. gelidum) in the overall kimchi samples. The pH, titratable acidity, viable cell counts, and coliform counts were not affected by salt variations. In order to assess sensory acceptance, the conducted sensory evaluation using a 9-point hedonic scale had revealed that samples with 1.3% salt concentration (lower than the manufacturer's regular salt concentration) was more preferred, indicating that the use of 1.3% salt concentration was acceptable in normal kimchi fermentation for its quality and safety. Despite similarities in pH, titratable acidity, viable cell counts, coliform counts, and LAB distributions among the various salt concentrations of kimchi samples, the sample with 1.3% salt concentration was shown to be the most preferred, indicating that this salt concentration was suitable in kimchi production in order to reduce salt intake through kimchi consumptions.

Quality of Irradiated Plain Yogurt during Storage at Different Temperatures

  • Ham, J.S.;Jeong, S.G.;Lee, S.G.;Han, G.S.;Jang, A.;Yoo, Y.M.;Chae, H.S.;Kim, D.H.;Kim, H.J.;Lee, W.K.;Jo, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.289-295
    • /
    • 2009
  • To develop a safer yogurt for immuno-compromised or allergy patients and to extend shelf-life, a plain yogurt was irradiated with doses of 0, 1, 3, 5, and 10 kGy using a gamma ray and the chemical and microbiological quality and allergenicity change were investigated. There was no difference in the content of protein, total solid, and amino acids of the plain yogurt by irradiation treatment and different storage temperatures (4, 20, and $35^{\circ}C$). The lactic acid bacterial counts of irradiated plain yogurt had approximately 3-decimal reduction at 3 kGy, and no viable cell at 10 kGy regardless of storage time and temperature. The binding ability of rabbit antiserum to milk proteins in irradiated plain yogurt showed that 10 kGy of irradiation produced significantly higher binding ability than other treatments. Sensory evaluation indicated that only appearance of the plain yogurt irradiated at 3 kGy or higher had a lower value than the non-irradiated control when stored at $20^{\circ}C$. Results suggest that irradiation of plain yogurt does not significantly affect the chemical and sensory quality of plain yogurt, but can extend the shelf-life, possibly reduce allergenicity, and provide a safer product.

Qualify Characteristics of Accelerated Anchovy Sauce Manufactured with B. subtilis JM3 Pretense (B. subtilis JM3 Pretense로 제조한 멸치액젓의 품질특성)

  • Park, J.H.;You, S.G.;Kim, Y.M.;Kim, D.S.;Kim, S.M.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.600-605
    • /
    • 2006
  • B. subtilis JM3 pretense from naturally fermented anchovy sauce was purified in $40{\sim}60%$ ammonium sulfate fraction. In order to accelerate the fermentation of anchovy sauce,2% and 4% of crude B. subtilis JM3 protease were added to 6 month-fermented anchovy sauces, respectively and then the various quality characteristics such as pH, lactic acid, amino-nitrogen, VBN, browning and hydrolysis degree, VBN, and sensory evaluation were analyzed at different storage times. pH was constant during storage time in all samples, whereas lactic acid contents of anchovy sauces hydrolyzed by 2% and 4% proteases were higher than that of control. The amino-nitrogen and volatile basic nitrogen contents of anchovy sauce with 2% and 4% proteases were twice higher than those of control. Anchovy sauces with 2% and 4% pretense increased the hydrolysis rate by 27% and 32%, respectively. Browning degree of anchovy sauce with 4% was higher than those of 2% and control. Anchovy sauce with 2% and 4% proteases was good in sensory evaluation of color, aroma, and taste attributes.

Effect of Blanching on the Quality Characteristics of Dandelion (Taraxacum platycarpum D.) Kimchi (민들레 김치의 품질 특성에 미치는 데치기 효과)

  • Park In-Kyung;Kim Soon-Dong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.2
    • /
    • pp.194-199
    • /
    • 2005
  • This study was conducted to investigate the effect of blanching on the quality characteristics of dandelion Kimchi. Experimental groups were divided BT-group (dandelion was blanched in the $3\%$ brine for 15 seconds at $100^{\circ}C$, then salted in $8\%$ brine for 5 hours) and NT-group (dandelion was salted at $8\%$ brine for 5 hours). Changes in pH, acidity, color, number of total microbe and lactic acid bacteria, antioxidant activity and sensory quality were investigated during the fermentation at $10^{\circ}C$. The pH of the BT- and NT-Kimchi maintained higher than 4.1 for 21-days fermentation, but that of BT-Kimchi was lower than that of NT-Kimchi. And also, the titrable acidity of BT-Kimchi was maintained higher than that of NT-Kimchi. $L^\ast\;value\;and\;b^\ast$ value of BT-Kimchi were higher, while $a^\ast$ value of BT-Kimchi was lower than that of NT-Kimchi. There was no significantly difference in total microbial count between BT- and NT-Kimchi, while number of the lactic acid bacteria in the BT-Kimchi was higher than that of BT-Kimchi. There was no significant difference in the antioxidant activity between BT- and NT-group during the fermentation. In the results of sensory evaluation of the dandelion Kimchi, toughness, color, flavor and overall quality were good in the BT-Kimchi, while the bitter taste showed relatively strong in the NT-Kimchi.

  • PDF

Effects of the Vibration Stress on Cortisol and Hematological Characteristics in Soft-shelled Turtle, Pelodiscus sinensis (진동 스트레스에 따른 자라, Pelodiscus sinensis의 코티졸 및 혈액학적 특성)

  • Hur, Jun-Wook;Lee, Jeong-Yeol;Chang, Young-Jin;Bai, Sung-Chul;Park, In-Seok
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • We examined the effects of the vibration stress on cortisol secretion and hematological characteristics in soft-shelled turtle, Pelodiscus sinensis. For the stressed group vibration of $45{\sim}78 dB(V)$ from electric vibrator applied for 30 min with 2-h intervals during daytime ($08:00{\sim}18:00$) up to 28 days. Using the blood samples collected from ten turtles held once a week after vibration stress, we measured hematocrit, hemoglobin, red blood cells, cortisol, glucose, lactic acid, osmolality, $Na^+,\;K^+,\;Cl^-$, aspartate aminotransferase (AST), and alanine aminotransferase (ALT). The results have showed that P. sinensis received vibration stress exhibit the 'typical' stress-induced physiological responses (cortisol, glucose, lactic acid, osmolality, ions, hematocrit and hemoglobin) induced by vibration stress. Our data suggested that chronic vibration stress caused substantial stress in the animal, and in particular, the persisting elevated levels of AST and ALT would be highly correlated with the adverse effects of the stress. The high hematological characteristics during entire experimental period showed that the P. sinensis could not adapt to chronic stimuli provoked by vibration stress.

  • PDF

Analysis of Microflora Profile in Korean Traditional Nuruk

  • Song, Sang Hoon;Lee, Chunghee;Lee, Sulhee;Park, Jung Min;Lee, Hyong-Joo;Bai, Dong-Hoon;Yoon, Sung-Sik;Choi, Jun Bong;Park, Young-Seo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • A variety of nuruk were collected from various provinces in Korea, and their microflora profiles were analyzed at the species level. A total of 42 nuruk samples were collected and when the viable cell numbers in these nuruk were enumerated, the average cell numbers of bacteria, fungi, yeast, and lactic acid bacteria from all nuruk were 7.21, 7.91, 3.49, and 4.88 log CFU/10 g, respectively. There were no significant differences in viable cell numbers of bacteria or fungi according to regions collected. Bacillus amyloliquefaciens and B. subtilis were the predominant bacterial strains in most samples. A significant portion, 13 out of 42 nuruk, contained foodborne pathogens such as B. cereus or Cronobacter sakazakii. There were various species of lactic acid bacteria such as Enterococcus faecium and Pediococcus pentosaceus in nuruk. It was unexpectedly found that only 13 among the 42 nuruk samples contained Aspergillus oryzae, the representative saccharifying fungi in makgeolli, whereas a fungi Lichtheimia corymbifera was widely distributed in nuruk. It was also found that Pichia jadinii was the predominant yeast strain in most nuruk, but the representative alcohol fermentation strain, Saccharomyces cerevisiae, was isolated from only 18 out of the 42 nuruk. These results suggested that a variety of species of fungi and yeast were distributed in nuruk and involved in the fermentation of makgeolli. In this study, a total of 64 bacterial species, 39 fugal species, and 15 yeast species were identified from nuruk. Among these strains, 37 bacterial species, 20 fungal species, and 8 yeast species were distributed less than 0.1%.

Effect of inoculants and storage temperature on the microbial, chemical and mycotoxin composition of corn silage

  • Wang, Musen;Xu, Shengyang;Wang, Tianzheng;Jia, Tingting;Xu, Zhenzhen;Wang, Xue;Yu, Zhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1903-1912
    • /
    • 2018
  • Objective: To evaluate the effect of lactic acid bacteria and storage temperature on the microbial, chemical and mycotoxin composition of corn silage. Methods: Corn was harvested at 32.8% dry matter, and chopped to 1 to 2 cm. The chopped material was subjected to three treatments: i) control (distilled water); ii) $1{\times}10^6$ colony forming units (cfu)/g of Lactobacillus plantarum; iii) $1{\times}10^6cfu/g$ of Pediococcus pentosaceus. Treatments in triplicate were ensiled for 55 d at $20^{\circ}C$, $28^{\circ}C$, and $37^{\circ}C$ in 1-L polythene jars following packing to a density of approximately $800kg/m^3$ of fresh matter, respectively. At silo opening, microbial populations, fermentation characteristics, nutritive value and mycotoxins of corn silage were determined. Results: L. plantarum significantly increased yeast number, water soluble carbohydrates, nitrate and deoxynivalenol content, and significantly decreased the ammonia N value in corn silage compared with the control (p<0.05). P. pentosaceus significantly increased lactic acid bacteria and yeast number and content of deoxynivalenol, nivalenol, T-2 toxin and zearalenone, while decreasing mold population and content of nitrate and 3-acetyl-deoxynivalneol in corn silage when stored at $20^{\circ}C$ compared to the control (p<0.05). Storage temperature had a significant effect on deoxynivalenol, nivalenol, ochratoxin A, and zearalenone level in corn silage (p<0.05). Conclusion: Lactobacillus plantarum and Pediococcus pentosaceus did not decrease the contents of mycotoxins or nitrate in corn silage stored at three temperatures.

Oligosaccharide Production by Leuconostoc lactis CCK940 Which Has Glucansucrase Activity (Leuconostoc lactis CCK940의 Glucansucrase 활성에 의한 올리고당 생산 최적화)

  • Lee, Sulhee;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2017
  • Glucansucrase is an enzyme classified as a glycoside hydrolase (GH) 70 family, which catalyzes the synthesis of glucooligosaccharides with a low molecular weight using sucrose as a donor of D-glucopyranose and maltose as a carbohydrate acceptor. In this study, glucansucrase-producing lactic acid bacteria strain was isolated from the fermented foods collected in traditional markets, and the optimum conditions for the oligosaccharide production were investigated. The strain CCK940 isolated from Chinese cabbage kimchi was selected as an oligosaccharide-producing strain due to its high glucansucrase activity, with 918.2 mU/mL, and identified as Leuconostoc lactis. The optimum conditions for the production of oligosaccharides using Leu. lactis CCK940 were to adjust the initial pH to 6.0, add 5% (w/v) sucrose and 10% (w/v) maltose as a donor and acceptor molecules, respectively, and feed 5% (w/v) sucrose at 4 and 8 h of cultivation. When Leu. lactis CCK940 was cultured for 12 h at optimum conditions, at least four oligosaccharides with a polymerization degree of 2-4 were produced.

Short-Term Changes in Gut Microflora and Intestinal Epithelium in X-Ray Exposed Mice

  • Tsujiguchi, Takakiyo;Yamaguchi, Masaru;Yamanouchi, Kanako
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.163-170
    • /
    • 2020
  • Background: Gut microflora contributes to the nutritional metabolism of the host and to strengthen its immune system. However, if the intestinal barrier function of the living body is destroyed by radiation exposure, the intestinal bacteria harm the health of the host and cause sepsis. Therefore, this study aims to trace short-term radiation-induced changes in the mouse gut microflora-dominant bacterial genus, and analyze the degree of intestinal epithelial damage. Materials and Methods: Mice were irradiated with 0, 2, 4, 8 Gy X-rays, and the gut microflora and intestinal epithelial changes were analyzed 72 hours later. Five representative genera of Actinobacteria, Firmicutes, and Bacteroidetes were analyzed in fecal samples, and the intestine was pathologically analyzed by Hematoxylin-Eosin and Alcian blue staining. In addition, DNA fragmentation was evaluated by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Results and Discussion: The small intestine showed shortened villi and reduced number of goblet cells upon 8 Gy irradiation. The large intestine epithelium showed no significant morphological changes, but the number of goblet cells were reduced in a radiation dose-dependent manner. Moreover, the small intestinal epithelium of 8 Gy-irradiated mice showed significant DNA damaged, whereas the large intestine epithelium was damaged in a dose-dependent manner. Overall, the large intestine epithelium showed less recovery potential upon radiation exposure than the small intestinal epithelium. Analysis of the intestinal flora revealed fluctuations in lactic acid bacteria excretion after irradiation regardless of the morphological changes of intestinal epithelium. Altogether, it became clear that radiation exposure could cause an immediate change of their excretion. Conclusion: This study revealed changes in the intestinal epithelium and intestinal microbiota that may pave the way for the identification of novel biomarkers of radiation-induced gastrointestinal disorders and develop new therapeutic strategies to treat patients with acute radiation syndrome.

Comparison of Saponin Content and Antioxidant Effect depending on the Processing Method of Codonopsis lanceolata

  • Kim, Eun Young;Jeon, Jeong Wook;Hyun, Kyung-Yae
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.291-297
    • /
    • 2021
  • Codonopsis lanceolata, called deodeok in Korean, has been verified for various effects, including anti-aging and anti-inflammatory effects and insomnia improvement, and is one of the healthy foods that Koreans enjoy eating. In this study, the saponin content, lansemaside A content, and total saponin content of deodeok were analyzed using high-pressure sterilization and solid fermentation by mixed lactic acid bacteria. The antioxidant effect was compared to determine improved processing methods of deodeok. The lansemaside A content of deodeok samples depending on the preprocessing methods was analyzed: 2,594.10 mg/kg for dried deodeok, 2,100.93 mg/kg for steamed deodeok, and 1,151.31mg/kg for fermented deodeok. The total saponin content was found to be 7,209 mg/kg for dried deodeok and 8,605 mg/kg for steamed deodeok, showing a high saponin content. The total polyphenol content was highest for dried deodeok, steamed deodeok, and fermented deodeok. As for the antioxidant effect, it was analyzed that the effect of dried deodeok was the highest, followed by steamed deodeok and fermented deodeok; Dried deodeok had the highest value in total polyphenol content, not in total saponin content, which is considered to have a positive influence on its antioxidant effect. The content of lansemaside A was the highest for dried deodeok. When fermented deodeok is consumed, more beneficial effects on health can be expected by ingesting it with lactic acid bacteria cultured using saponins and polyphenols. Therefore, this study suggests the possibility of manufacturing products suitable for the needs of consumers, such as the flavor of deodeok, according to the processing methods.