• Title/Summary/Keyword: D(-)-lactate

Search Result 211, Processing Time 0.031 seconds

Simultaneous Quantification of Urinary L-, and D-Lactate by Reversed-Phase Liquid Chromatography Tandem Mass Spectrometry (액체크로마토그래프-탠덤질량분석기(LC-MS/MS)를 이용한 소변 내 D-, L- Lactate 분리 및 정량)

  • Moon, Chul Jin;Yang, Song Hyun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.59-64
    • /
    • 2015
  • Purpose: Lactate has two optical isomers, L-lactate and D-lactate. In human L-lactate is the most abundant enantiomer of lactate. As plasma and urinary levels of L-lactate is associated with inherited metabolic disorders in general, D-lactate have been linked to the presence of diabetes and inflammatory bowel disease. Previously developed techniques have shown several limitations to further evaluate D-lactate as a biomarker for this condition. In this paper, we describe a highly sensitive, specific and fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the analysis of D-, L-lactate in urine. Methods: D- and L-lactate were quantified using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) with labelled internal standard. Samples were derivatized with (+)-O,O'-diacety-L-tartaric anhydride (DATAN) and seperated on a Poroshell 120 EC-C18 column. Results: Quantitative analysis of D-, and L-lactate was achieved successfully. Calibration curves were linear (r>0.999) over $0.5-100{\mu}g/mL$. Stabilities for samples were within the 10% varation. Inter- and Intra-day assay variations were below 10%. Conclusion: The presented method proved to be suitable for the quantitation of D- and L-lactate and opens the possibility to explore the use of D-lactate as a biomarker.

Preliminary Data on the Ratio of D(-)-Lactate and L(+)-Lactate Levels in Various Lactic Acid Bacteria as Evaluated using an Enzymatic Method

  • Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This study evaluated the levels of D(-)-lactate and L(+)-lactate, and the ratio of D(-)-lactate to total lactate (D(-)-lactate + L(+)-lactate) of 15 lactic acid bacteria (LAB) using an enzymatic method. D(-)-lactate and L(+)-lactate levels in the LAB ranged from 0.31 to 13.9 mM and 0.76 to 39.3 mM, respectively, in Bifidobacterium sp.; 1.08 to 11.7 mM and 0.69-13.0 mM in Lactobacillus sp.; 0.72 to 20.3 mM and 0.98 to 32.3 mM in Leuconostoc sp., and 33.0 mM and 39.2 mM in Pediococcus acidilacti KCCM 11747. The ratio of the range of D(-)-lactic acid to total lactic acid was 28.98%-45.76% in Bifidobacterium sp., 41.18%-61.02% in Lactobacillus sp., 29.85%-42.36% in Leuconostoc sp., and 45.71% in P. acidilacti KCCM 11747. In the future, there is a need to test for D(-)-lactate in various fermented products to which different LAB have been added and study the screening of LAB used as probiotics that produce various concentrations of D(-)-lactate.

균체재순환 반응기에서의 젖산 생산

  • 유익근;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.277-282
    • /
    • 1994
  • In batch cultures of Lactobacillus delbrueckii, cell growth and lactic acid production were affected by two main factors, inhibition by lactic acid and limitation by nutritional components. In order to increase th productivity significantly, a continuous stirred tank reactor with cell recycle was employed. A cell desnity of 145g dry weight/l and a volumetric productivity of 73 g/l$\cdot $h were obtained with an effluent concentration of 85 g/l lactic acid. The productivity achieved by this system was 23-fold higher than those obtained by the corresponding batch cultivations. Once the lactic acid concentration reached the steady steady state, lowering the yeast extract concentration caused the reduction of the lactic acid concentration without affection the biomass concentration. Finally, the formation of D-lactate was investgated. During the various cultures, a small amount of D-lactate always formed, even thought a majority of lactate was L-isomer, It was supposed that the relative amount of the D-lactate was affected by glucose limitation, and there seems to exist a certain relationship between the concentration of D-lactate and acetate.

  • PDF

Isolation and Characterization of Lactate-Tolerant Mutants in Bifidobacterium breve

  • Hyun, Hyung-Hwan;Lee, Hyune-Hwan;Yeo, Ick-Hyun;Kim, Tae-Seok;Lee, Joo-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.84-90
    • /
    • 1999
  • The growth of Bifidobacterium breve strain HP2 was completely inhibited by the addition of lactate higher than 4.0% but not by the addition of acetate. Two kinds of lactate-tolerant mutants were isolated by the nitrosoguanidine treatment, enrichment on a liquid medium with 5% lactate, and selection on agar plates with 5% lactate. The mutants were not only able to grow in the presence of 5% lactate but also improved in viable cell stability in the acidic pH range. In a pH-controlled fermentor, mutant N-1-5 grew at a rate slower than that of the wild type but its growth yield was higher. Notably, mutants were more halotolerant and more osmotolerant than the wild type and they were able to grow in the presence of 3% NaCl or 25% lactose at which the wild type entirely stopped the growth. The enzyme activities involved in the lactose metabolism in B. breve were measured to elucidate the biochemical basis for lactate tolerance. In the mutants, activities of several enzymes including phosphoglucomutase decreased compared to the wild-type, which may explain their lower growth rate. However, the activity of lactate dehydrogenase or its nature of inhibition by lactate was not altered.

  • PDF

Cloning and Characterization of the Lactate Dehydrogenase Genes from Lactobacillus sp. RKY2

  • Lee, Jin-Ha;Choi, Mi-Hwa;Park, Ji-Young;Kang, Hee-Kyoung;Ryu, Hwa-Won;Sunwo, Chang-Sin;Wee, Young-Jung;Park, Ki-Deok;Kim, Do-Won;Kim, Do-Man
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.318-322
    • /
    • 2004
  • Lactic acid is an environmentally benign organic acid that could be used as a raw material for biodegradable plastics if it can be inexpensively produced by fermentation. Two genes (ldhL and ldhD) encoding the L-(+) and D-(-) lactate dehydrogenases (L-LDH and D-LDH) were cloned from Lactobacillus sp., RKY2, which is a lactic acid hyper-producing bacterium isolated from Kimchi. Open reading frames of ldhL for and ldhD for the L and D-LDH genes were 962 and 998 bp, respectively. Both the L(+)- and D(-)-LDH proteins showed the highest degree of homology with the L- and D-lactate dehydrogenase genes of Lactobacillus plantarum. The conserved residues in the catalytic activity and substrate binding of both LDHs were identified in both enzymes.

Characteristics of Lactate Dehydrogenase Produced from Lactobacillus sp. FFy111-1 as a Ruminant Probiotic (반추동물용 활성제로서 Lactobacillus sp. FFy111-1이 생산한 Lactate Dehydrogenase의 특성에 관한 연구)

  • Sung, H.G.;Kim, D.K.;Bae, H.D.;Shin, H.T
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.625-634
    • /
    • 2004
  • The objective of this experiment is to study the possibility of lactate dehydrogenase(LDH) enzyme to prevent lactate accumulation in the rumen, For understanding capacity of bacterial LDH in rumen environments, this study was conducted to explore the effects of temperature, pH, VFAs and metal ions on Lactobacillus sp. FFy111-1's LDH activity, and the LDH activation in rumen fluid accumulated lactate. The optimum pH and temperature of LDH were pH 7.5 and 40$^{\circ}C$, respectively. The LDH activity had a good thennostability at range from 30 to 50$^{\circ}C$. The highest pH stability of the enzyme was at ranges from pH 7.0 to 8.0 and the enzyme activities showed above 64% level of non-treated one at pH 6.0 and 6.5. The LDH was inactivated by VFAs treatments but was enhanced by metal ion treatments without NaCl and $CuSO_4$ Especially, the LDH activity was increased to 127% and 124% of its original activity by 2 mM of $BaCl_2$ and $MnSO_4$, addition, respectively. When the acidic rumen fluid was treated by LDH enzyme of Lactobacillus sp. FFy111-1, the lactate concentration in the rumen fluid was lower compared with non-treated rumen fluid(P<0.05). This lactate reduction was resulted from an action of LDH. It was proved by result of purified D,L-LDH addition that showed the lowest lactate concentration among the treatments(P<0.05). Although further investigation of microbial LDH and ruminal lactate is needed, these findings suggest that the bacterial LDH has the potential capability to decrease the lactate accumulated in an acidic rumen fluid. Also, screening of super LDH producing bacteria and technical development for improving enzyme activity in rumen environment are essential keys for practical application.

Optimization of Scan Parameters for in vivo Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging

  • Nguyen, Nguyen Trong;Rasanjala, Onila N.M.D.;Park, Ilwoo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the change in signal sensitivity over different acquisition start times and optimize the scanning window to provide the maximal signal sensitivity of [1-13C]pyruvate and its metabolic products, lactate and alanine, using spatially localized hyperpolarized 3D 13C magnetic resonance spectroscopic imaging (MRSI). Materials and Methods: We acquired 3D 13C MRSI data from the brain (n = 3), kidney (n = 3), and liver (n = 3) of rats using a 3T clinical scanner and a custom RF coil after the injection of hyperpolarized [1-13C]pyruvate. For each organ, we obtained three consecutive 3D 13C MRSI datasets with different acquisition start times per animal from a total of three animals. The mean signal-to-noise ratios (SNRs) of pyruvate, lactate, and alanine were calculated and compared between different acquisition start times. Based on the SNRs of lactate and alanine, we identified the optimal acquisition start timing for each organ. Results: For the brain, the acquisition start time of 18 s provided the highest mean SNR of lactate. At 18 s, however, the lactate signal predominantly originated from not the brain, but the blood vessels; therefore, the acquisition start time of 22 s was recommended for 3D 13C MRSI of the rat brain. For the kidney, all three metabolites demonstrated the highest mean SNR at the acquisition start time of 32 s. Similarly, the acquisition start time of 22 s provided the highest SNRs for all three metabolites in the liver. Conclusion: In this study, the acquisition start timing was optimized in an attempt to maximize metabolic signals in hyperpolarized 3D 13C MRSI examination with [1-13C] pyruvate as a substrate. We investigated the changes in metabolic signal sensitivity in the brain, kidney, and liver of rats to establish the optimal acquisition start time for each organ. We expect the results from this study to be of help in future studies.

Effect of Calcium Lactate on Physico-Chemical Characteristics of Shank Bone Extract

  • Choi, Jung-Seok;Jin, Sang-Keun;Choi, Yeong-Seok;Lee, Jin-Kyu;Jung, Ji-Taek;Choi, Yang-Il;Lee, Hyun-Joo;Lee, Jae-Joon
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.313-319
    • /
    • 2017
  • This study was conducted to develop calcium-fortified shank bone extract (SBE) and to determine the effect of adding calcium lactate on physico-chemical characteristics of SBE during cold storage. The following five experiment groups were used: Control (0%, no addition), T1 (0.05% calcium lactate), T2 (0.1% calcium lactate), T3 (0.5% calcium lactate), and T4 (1% calcium lactate). When the concentration of calcium lactate added to the SBE was increased, the pH, redness, and yellowness values were significantly reduced, whereas the salinity, sugar content, and turbidity of SBE were significantly increased. Sensory parameters such as aroma, flavor, and overall acceptability in the control, T1, and T2 had similar scores. The TBARS values of SBE was significantly increased when 1% of calcium lactate was added, and the VBN values of SBE with calcium lactate at day 7 were higher than that of control (p<0.05). However, the addition of calcium lactate showed an inhibition effect on the growth of total microbial counts in SBE until 4 d of storage. The calcium content of SBE was increased by the addition of calcium lactate in a dose-dependently manner. The proper addition level of calcium lactate in the SBE was determined to be 0.1%.

Effects of Short-term Feeding Magnesium before Slaughter on Blood Metabolites and Postmortem Muscle Traits of Halothane-carrier Pigs

  • Chen, Jing;Liu, XianJun;Bian, LianQuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.879-885
    • /
    • 2013
  • Fifty-four, mixed-sex, halothane-carrier crossbred (Yorkshire${\times}$Landrace) pigs with an average initial BW of $108.2{\pm}0.8$ kg were randomly allotted to one of three dietary treatments for 5 d before slaughter: i) a control corn-soybean meal finisher diet devoid of supplemental magnesium; ii) a diet supplemented with 1.5 g/kg of elemental Mg from magnesium acetate; and iii) a diet supplemented with 1.5 g/kg of elemental Mg from magnesium sulfate heptahydrate. Serum creatine kinase (CK), lactate and glucose were analyzed at slaughter. Muscles from longissimus (LM) were packaged and stored to simulate display storage for muscle lactate and glycogen determinations at 0, 1, 2, 3, and 4 d. Mg supplementation reduced (p<0.05) serum CK and lactate concentration, but had no effect (p>0.05) on serum glucose. Daily change of muscle lactate concentration linearly increased (p<0.01), while glucose concentration linearly decreased (p<0.05) as storage time increased in all treatments. However, dietary Mg acetate and Mg sulfate supplementation in pigs elevated (p<0.05) muscle glycogen and reduced (p<0.05) muscle lactate concentrations, especially during the first 2 d of display, compared with pigs fed the control diet. This study suggests that short-term feeding of magnesium acetate and magnesium sulfate to heterozygous carriers of the halothane gene has beneficial effects on stress response and pork quality by improving blood and muscle biochemical indexes.

Anaerobic Reductive Dechlorination of Tetrachloroethylene (PCE) in Two-in-series Semi-continuous Soil Columns (반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 환원탈염소화)

  • Ahn, Young-Ho;Choi, Jeong-Dong;Kim, Young;Kwon, Soo-Youl;Park, Hoo-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • Anaerobic reductive dechlorination of tetrachloroethylene (PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate (as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. Dechlorination rate of PCE to cis-DCE was $0.62{\sim}1.94\;{\mu}mol$ PCE/L pore volume/d and $2.76\;{\mu}mol$ cis-DCE/ L pore volume/d for that for cis-DCE to ethylene, resulting that net dechlorination rate in the system was 1.43 umol PCE/L pore volume/d. During the degradation of cis-DCE to ethylene, the concentration of hydrogen in column groundwater was $22{\sim}29\;mM$ and $10{\sim}64\;mM$ for the degradation of PCE to cis-DCE. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through in-situ biological anaerobic reductive dechlorination processes.