• Title/Summary/Keyword: Czochralski

Search Result 219, Processing Time 0.03 seconds

Growth parameters and formation of slip plane in ZnWO4 single crystals by the Czochralski method

  • Lim, Chang-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.202-206
    • /
    • 2010
  • Single crystals of $ZnWO_4$ were grown successfully in the [100], [010] and [001] directions using the Czochralski method. The growth parameters and the formation of slip plane in $ZnWO_4$ crystals were studied. $ZnWO_4$ crystals had a cleavage plane of (010). The dislocation density on the (010) plane at the center of the crystal was lower than that of the edge region. It was inferred that the high density at the edge of the crystals was caused by the thermal gradient during crystal growth. The etch pit arrangement revealed the (100) slip plane to be most active during crystal growth.

CW Laser Generation form Nd;YAG Single Crystal Grown by Czochralski Method (Czochralski 방법으로 육성된 Nd:YAG 단결정으로부터 CW mode laser 의 발진)

  • 이상호;배소익;김한태;정수진
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1997.08a
    • /
    • pp.85-85
    • /
    • 1997
  • Czochralski 방법에 의해 육성된 Nd:YAG 단결정으로부터 CW mode의 1064nm laser를 발진시켰다. 육성된 단결정은 직경 50mm, 길이 120mm 이었으며, Nd 이온 농도는 O.2~0.9at% 이었다. 육성된 단결정 boule로 부터 결정학적 결함부위인 core 및 facet가 없는 양질의 단결정 부위를 Twyman-Green interferometer로 선빌하였다. 추출핀 부위는 절단, 가공, 연마공정 및 코팅 공정을 통해 직경 6.35mm, 길이 lOOmm의 laser rod를 제작하였다. 절단은 core drill, 또는 원통 연삭기를 사용하여 rod 형태로 가공하였으며, 상$\cdot$하면 polishing은 평행도 10", 직각도 5', 평활도 $\lambda$/10 수준까지 실험실에서 자체 가공하여 일반적인 laser 발진용 rod의 spec.을 만족시킬 수 있었다.

  • PDF

Numerical Study of Melt Flow Pattern by Thermal Gradient of the Crucible in the Czochralski Process (초크랄스키법에서 도가니의 온도구배가 유동장에 미치는 영향에 대한 수치해석 연구)

  • Park, Jong-In;Han, Jeong-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.734-739
    • /
    • 2009
  • It is well known that the temperature and the flow pattern of the crystal-melt interface affect the qualities of the single crystal in the Czochralski process. Thus the temperature profile in the growth system is very important information. This work focuses on controlling the temperature of the silicon melt with a thermal gradient of the crucible. Therefore, the side heater is divided into three parts and an extra heater is added at the bottom for thermal gradient. The temperature of the silicon melt can be strongly influenced and controlled by the electric power of each heater.

Single crystal growth of $ZnWO_4$ by the CZ and its physical properties (CZ법에 의한 $ZnWO_4$단결정 성장 및 물리적 특성)

  • 임창성;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.211-217
    • /
    • 2001
  • Czochralski법에 의한 ZnWO₄단결정을 [100], [101], [001] 방향으로 성공적으로 성장시켰다. 각 축 방향에 따른 성장조건이 rotation speed, pulling rate, 성장된 결정의 직경 등의 변수를 가지고 조사되어졌다. 성장된 결정의 냉각시 발생되는 균열을 annealing 효과에 의하여 방지할 수 있었다. 성장된 결정의 방위는 Laue back reflection으로 결정하였다. 각 축 방향으로 성장된 결정의 미세구조적 특징이 논하여졌으며, 경도, 열팽창계수 및 유전상수의 물리적 특성이 평가되어졌다.

  • PDF

Effect of applied magnetic fields on Czochralski single crystal growth (Part II) (Czochralski 단결성 성장특성제어를 위한 자장형태에 관한 연구 (Part 2))

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.46-56
    • /
    • 1994
  • The characteristics of flows, temperatures, concentrations of the boron are numerically studied when uniform axial magnetic fields are applied in the Czechralski crucible. The to governing factors to the flow regimes are buoyancy, thermocapillarity, centrifugal forces, magnetic forces, diffusion coefficient and segregation coefficient of the boron. Since the concentration of the boron is so low that buoyancy effects are negligible, it cannot affect the flow and temperature fields. From the fact that the flow fields are rotationally symmetric, two velocity components in the meridional plane and the circumferential velocity are calculated together with the temperature in the steady state. Based on the known velocity and temperature distributions the unsteady concentration distributions of the boron are calculated. As the strength of the magnetic is increased, the flow velocities are decreased. Circumferential velocities are large near the crucible side-wall and in the region below the rotating crystal. Steep temperatures gradient near the edge of the rotating crystal causes the Marangoni convection. It has been found out that the convection characteristics affects the unsteady transport phenomena of the boron.

  • PDF

Research for High Quality Ingot Production in Large Diameter Continuous Czochralski Method (대구경 연속성장 초크랄스키법에서 고품질 잉곳 생산을 위한 연구)

  • Lee, Yu Ri;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.124-129
    • /
    • 2016
  • Recently industry has voiced a need for optimally designing the production process of low-cost, high-quality ingots by improving productivity and reducing production costs with the Czochralski process. Crystalline defect control is important for the production of high-quality ingots. Also oxygen is one of the most important impurities that influence crystalline defects in single crystals. Oxygen is dissolved into the silicon melt from the silica crucible and incorporated into the crystalline a far larger amount than other additives or impurities. Then it is eluted during the cooling process, there by causing various defect. Excessive quantities of oxygen degrade the quality of silicone. However an appropriate amount of oxygen can be beneficial. because it eliminates metallic impurities within the silicone. Therefore, when growing crystals, an attempt should be made not to eliminate oxygen, but to uniformly maintain its concentration. Thus, the control of oxygen concentration is essential for crystalline growth. At present, the control of oxygen concentration is actively being studied based on the interdependence of various factors such as crystal rotation, crucible rotation, argon flow, pressure, magnet position and magnetic strength. However for methods using a magnetic field, the initial investment and operating costs of the equipment affect the wafer pricing. Hence in this study simulations were performed with the purpose of producing low-cost, high-quality ingots through the development of a process to optimize oxygen concentration without the use of magnets and through the following. a process appropriate to the defect-free range was determined by regulating the pulling rate of the crystals.

Effect of a Magnetic Field on the Solute Distribution of Czochralski Single Crystal Growth (초크랄스키 단결정 성장에서 자기장이 용질분포에 미치는 영향)

  • Kim, Moo Gewi;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.388-397
    • /
    • 1999
  • Numerical simulations are carried out for the magnetic Czochralski single crystal growth system. It Is shown that a magnetic field significantly suppresses the convective flow and as the strength of magnetic field becomes to be stronger, the heat transfer in the melt is dominated by conduction rather than convection. By imposing a cusp magnetic field, the growth interface shape becomes convex toward the melt. When the axial magnetic field is imposed, there occurs an inversion of the interface shape with increase of the magnetic field strength. The oxygen concentration near the interface decreases with increasing cusp magnetic field strength while axial field causes an increase of an oxygen concentration at the central region and decrease of that at the edge of the crystal. The results show that the cusp magnetic field has advantages over an axial magnetic field In the radial uniformity of oxygen as well as in the additional degree of control.

Effect of non-uniform magnetic field on the thermal behavior and mass transfer in magnetohydrodynamic Czochralski crystal growth of silicon (Magnetic Czochralski 실리콘 단결정 성장에서 열 및 유체유동과 질량전달에 미치는 비균일 자장의 효과)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.555-562
    • /
    • 1998
  • Under the influence of non-uniform magnetic field, melt flow in steady state and oxygen concentration in unsteady state are numerically investigated. The strength of the applied characteristic magnetic fields are B=0.1T, 0.2T, and 0.3T, respectively. The buoyancy effects due to the crucible wall heating and the thermocapillary effects due to the surface tention at the free surface are suppressed differentially by the non-uniform magnetic fields. As the intensity of characteristic magnetic fields is increasing, the recirculation region in the meridional plane is moving toward the growing crystal, and is diminishing. The oxygen concentration on the growing surface of crystals is decreasing and the uniformity of the oxygen concentration is increasing as the intensity of the magnetic fields is increasing.

  • PDF

Effect of crystal and crucible rotations on the mass transfer in magnetohydrodynamic Czochralski crystal growth of silicon (자기장이 가하여진 초크랄스키 실리콘 단결정 성장에서 질량전달에 미치는 성장결정과 도가니의 회전효과)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.536-547
    • /
    • 1997
  • For various angular velocities of crucible and crystal, the characteristics of melt flows, temperatures and concentrations of oxygen are numerically studied in the Czochralski furnace with a uniform axial magnetic field. Buoyancy effect due to the heating of crucible wall and thermocapillary effect due to the temperature gradient at the free surface, can be differentiably suppressed by the centrifugal forces due to the rotations of the crucible and crystal. The most important factor which yields the centrifugal forces is the rotation velocity of the crucible, that influences the fields of velocities, temperatures and concentrations. In the case that the crucible rotation velocity is not high, the rotations of the crystal gives rise to the centrifugal forces effectively.

  • PDF