• Title/Summary/Keyword: Cytotoxic drug

Search Result 278, Processing Time 0.02 seconds

A Case of Pneumonia Caused by Pneumocystis jirovecii Resistant to Trimethoprim-Sulfamethoxazole

  • Lee, Sang Min;Cho, Yong Kyun;Sung, Yon Mi;Chung, Dong Hae;Jeong, Sung Hwan;Park, Jeong-Woong;Lee, Sang Pyo
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.3
    • /
    • pp.321-327
    • /
    • 2015
  • A 50-year-old male visited the outpatient clinic and complained of fever, poor oral intake, and weight loss. A chest X-ray demonstrated streaky and fibrotic lesions in both lungs, and chest CT revealed multifocal peribronchial patchy ground-glass opacities with septated cystic lesions in both lungs. Cell counts in the bronchoalveolar lavage fluid revealed lymphocyte-dominant leukocytosis, and further analysis of lymphocyte subsets showed a predominance of cytotoxic T cells and few T helper cells. Video-assisted wedge resection of the left upper lobe was performed, and the histologic examination was indicative of a Pneumocystis jirovecii infection. Trimethoprim-sulfamethoxazole (TMP-SMX) was orally administered for 3 weeks; however, the patient complained of cough, and the pneumonia was aggravated in the follow-up chest X-ray and chest CT. Molecular studies demonstrated mutations at codons 55 and 57 of the dihydropteroate synthase (DHPS) gene, which is associated with the resistance to TMP-SMX. Clindamycin-primaquine was subsequently administered for 3 weeks replacing the TMP-SMX. A follow-up chest X-ray showed that the pneumonia was resolving, and the cough was also alleviated. A positive result of HIV immunoassay and elevated titer of HCV RNA indicated HIV infection as an underlying condition. This case highlights the importance of careful monitoring of patients with P. jirovecii pneumonia (PCP) during the course of treatment, and the molecular study of DHPS mutations. Additionally, altering the anti-PCP drug utilized as treatment must be considered when infection with drug-resistant P. jirovecii is suspected. To the best of our knowledge, this is the first case of TMP-SMX-resistant PCP described in Korea.

Inhibition of DNA-dependent Protein Kinase by Blocking Interaction between Ku Complex and Catalytic Subunit of DNA-dependent Protein Kinase

  • Kim, Chung-Hui;Cuong, Dang-Van;Kim, Jong-Su;Kim, Na-Ri;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • Recent studies indicated that cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs by enhanced DNA repair of the lesions. Therefore, it is expected to increase the killing of cancer cells and reduce drug resistance by inhibiting DNA repair pathways that tumor cells rely on to escape chemotherapy. There are a number of key human DNA repair pathways which depend on multimeric polypeptide activities. For example, Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) on binding to double strand DNA breaks (DSBs) are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and are essential for DNA-dependent protein kinase (DNA-PK) activity. It has been known that DNA-PK is an important factor for DNA repair and also is a sensor-transmitting damage signal to downstream targets, leading to cell cycles arrest. Our ultimate goal is to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. This would greatly facilitate tumor cell cytotoxic activity and programmed cell death through DNA damaging drug treatment. Therefore, we designed a domain of Ku80 mutants that binds to Ku70 but not DNA end binding activity and used the peptide in co-therapy strategy to see whether the targeted inhibition of DNA-PK activity sensitized breast cancer cells to irradiation or chemotherapy drug. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, thus resulting in inactivation of DNA-PK activity. Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to IR or chemotherapy drugs, and the growth of breast cancer cells was inhibited. Additionally, the results obtained in the present study also support the physiological role of resistance of cancer cells to IR or chemotherapy.

Anti-Arthritic Effect of Sogyunghwalhyel-tang-gamibang (소경활혈탕가미방(疎經活血湯加味方)의 관절염에 미치는 효과)

  • Jo, Joo-hyun;Im, Ji-sung;Kim, Jong-gyu;Park, Jung-hyun;Choi, Hag-soon;Hwang, Geu-won;Song, Yung-sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.33-46
    • /
    • 2021
  • Objectives The aim of this study is to evaluate anti-inflammatory and anti-arthritic effects of Sogyunghwalhyel-tang-gamibang (SGHHTGB) in cell and animal models and also to suggest one of putative mechanisms underlying its anti-arthritic effects. Methods Enzyme-linked immunosorbent assay was applied to measure the concentrations of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and prostaglandin E2 (PGE2) in culture medium and blood serum and nitric oxide (NO) was assayed by Griess reagent. The expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were analyzed by Western blot method. Results In a cell model using RAW264.7 macrophages stimulated with the endotoxin lipopolysaccharide (LPS), the drug, at its non-cytotoxic concentrations, inhibited the production of the pro-inflammatory cytokine TNF-α, IL-1β and IL-6. In addition, it suppressed the expression of the inflammatory enzyme iNOS and COX-2, and reduced the synthesis of the enzyme product NO (as stable nitrite) and PGE2 in activated macrophages. Meanwhile, in an animal model using rheumatic arthritis (RA) mice induced with injection of type II collagen antibody (CAb) and LPS, the drug improved clinical symptom of arthritis and reduced paw thickness and inflammatory cell infiltration. In blood of RA mice, the drug reduced serum levels of TNF-α, IL-1β, IL-6, nitrite, and PGE2, all inflammatory mediators produced by activated macrophages. Conclusions SGHHTGB may ameliorate CAb and LPS-induced RA in mice, presumably by inactivating macrophages that are capable of initiating joint inflammation by producing pro-inflammatory cytokines and expressing inflammatory enzymes.

Antioxidant and Cytotoxic Activities of Hot Water and Ethanol Extracts From Caesalpinia sappan (소목의 열수 및 에탄올 추출물의 항산화 및 항암활성)

  • Park, Mi-Hye;Kim, Bumsik
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • Caesalpinia sappan L. is an oriental medicinal plant distributed in the Asia Pacific region including India, Malaysia, and China. The dried heartwood of Caesalpinia sappan has been traditionally used as an analgesic and anti-inflammatory drug. In this study, the effects of extract methods of C. sappan on contents of total polyphenols and flavonoids, antioxidant activity, and cytotoxic activity were evaluated. As a result, hot water extract from C. sappan (CSWE) significantly exhibited contents of total polyphenols and flavonoids (22.6 mg GAE/g and 14.5 mg QE/g) higher than 70% ethanol extract (CSEE) (17.6 mg GAE/g and 13.2 mg QE/g). However, CSEE showed greater antioxidant activity than CSWE in both DPPH and ABTS. Also, the cytotoxicity of C. sappan against three kinds of cancer cell lines was higher in CSEE than in CSWE. These results show that ethanol extract is a better extract method than hot water method to maintain antioxidant and anti-cancer activities.

Evaluation of the antimalarial activity of SAM13-2HCl with morpholine amide (SKM13 derivative) against antimalarial drug-resistant Plasmodium falciparum and Plasmodium berghei infected ICR mice

  • Hyelee Hong;Kwonmo Moon;Thuy-Tien Thi Trinh;Tae-Hui Eom;Hyun Park;Hak Sung Kim;Seon-Ju Yeo
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.42-52
    • /
    • 2024
  • Antimalarial drugs are an urgently need and crucial tool in the campaign against malaria, which can threaten public health. In this study, we examined the cytotoxicity of the 9 antimalarial compounds chemically synthesized using SKM13-2HCl. Except for SKM13-2HCl, the 5 newly synthesized compounds had a 50% cytotoxic concentration (CC50) >100 μM, indicating that they would be less cytotoxic than SKM13-2HCl. Among the 5 compounds, only SAM13-2HCl outperformed SKM13-2HCl for antimalarial activity, showing a 3- and 1.3-fold greater selective index (SI) (CC50/IC50) than SKM13-2HCl in vitro against both chloroquine-sensitive (3D7) and chloroquine -resistant (K1) Plasmodium falciparum strains, respectively. Thus, the presence of morpholine amide may help to effectively suppress human-infectious P. falciparum parasites. However, the antimalarial activity of SAM13-2HCl was inferior to that of the SKM13-2HCl template compound in the P. berghei NK65-infected mouse model, possibly because SAM13-2HCl had a lower polarity and less efficient pharmacokinetics than SKM13-2HCl. SAM13-2HCl was more toxic in the rodent model. Consequently, SAM13-2HCl containing morpholine was selected from screening a combination of pharmacologically significant structures as being the most effective in vitro against human-infectious P. falciparum but was less efficient in vivo in a P. berghei-infected animal model when compared with SKM13-2HCl. Therefore, SAM13-2HCl containing morpholine could be considered a promising compound to treat chloroquine-resistant P. falciparum infections, although further optimization is crucial to maintain antimalarial activity while reducing toxicity in animals.

Antiangiogenic Activity of Coptis chinensis Franch. Water Extract in in vitro and ex vivo Angiogenesis Models (In vitro와 ex vivo 혈관신생 모델에서 황련 냉수추출물의 신생혈관 억제효과)

  • Kim, Eok-Cheon;Kim, Seo Ho;Lee, Jin-Ho;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.78-88
    • /
    • 2017
  • Angiogenesis, the formation of new blood vessels, plays an important role in tumor growth and metastasis; therefore, it has become an important target in cancer therapy. Novel anticancer pharmaceutical products that have relatively few side effects or are non-cytotoxic must be developed, and such products may be obtained from traditional herbal medicines. Coptis chinensis Franch. is an herb used in traditional medicine for the treatment of inflammatory diseases and diabetes. However, potential antiangiogenic effects of C. chinensis water extract (CCFWE) have not yet been studied. The purpose of this study was to determine the antiangiogenic effect of CCFWE in order to evaluate its potential for an anticancer drug. We found that the treatment with CCFWE inhibited the major steps of the angiogenesis process, such as the endothelial cell proliferation, migration, invasion, and capillary-like tube formation in response to vascular endothelial growth factor (VEGF), and also resulted in the growth inhibition of new blood vessels in an ex vivo rat aortic ring assay. We also observed that CCFWE treatment arrested the cell cycle at the G0/G1 phase, preventing the G0/G1 to S phase cell cycle progression in response to VEGF. In addition, the treatment reduced the VEGF-induced activation of matrix metalloproteinases 2 and 9. Taken together, these findings indicate that CCFWE should be considered a potential anticancer therapy against pathological conditions where angiogenesis is stimulated during tumor development.

In Vitro Antitumor Activity of BCNU-Loaded PLGA Wafer Containing Additives (첨가제 함유 BCNU/PLGA웨이퍼의 in vitro 항암 활성)

  • Lee, Jin-Soo;An, Tae-Kun;Shin, Phil-Kyung;Chae, Ghang-Soo;Jeong, Je-Kyo;Lee, Bong;Cho, Sun-Hang;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.217-225
    • /
    • 2003
  • We fabricated the 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine)-loaded PLGA wafers containing poly(N-vinylpyrrolidone) (PVP) or tedium chloride (NaCl) in order to control the release profile of drug in special shape (3 in diameter, 1 mm in thickness) by direct compression method. In vitro release profiles of BCNU could be controlled by additives contained in the wafers. Initial release amount, release rate and duration of BCNU could be controlled with presence of PVP or NaCl. In vitro antitumor activity accessed using 9L gliosarcoma cell line has been evaluated by assaying the viability of cells treated with BCNU released from the wafers containing additives resulting in continuous growth inhibition of 9L gliosarcoma tumor cells. Specially, the continuous growth inhibition of BCNU-loaded PLGA wafers containing additives was more effective than that of non-additive BCNU-loaded PLGA wafers. The cytotoxic effect of the drug from the wafers containing NaCl as compared to wafers containing PVP was more enhanced.

Immune-alteration Demonstrated at the Korean Vietnam War Veterans Exposed to Agent Orange (2,3,7,8-tetrachlorodibenzo-p-dioxin 노출과 관련한 인체면역기능 변화를 판단할 수 있는 지표치 개발에 관한 연구)

  • Heo, Yong;Kim, Eun-Mi;Yu, Ji-Yeon;Hong, Seung-Kwon;Jeon, Seong-Hoon;Kim, Hyoung-Ah;Cho, Dae-Hyun;Han, Soon-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.112-124
    • /
    • 2002
  • 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to exert detrimental toxicities on various organ systems including reproductive, cardiovascular, nervous, or dermal system. Immunomodulatory effects of TCDD is thymic atrophy, downregulation of cytotoxic T or B lymphocyte differentiation and activation, which were demonstrated using experimental animals, whereas immunotoxicity in human has not been investigated well. This study was proceeded to evaluate general immunologic spectrum of the Korean Vietnam War veterans exposed to TCDD during their operation, and compare with that of the non-exposed control subjects with similar age. Regarding composition and quantity, immune cells in peripheral blood collected from the TCDD-exposed was not much different from those of the control except decreased red blood cell, hemoglobin and hematocrit level. Furthermore, plasma IgG2, G3, and G4 isotype distribution was similar between two groups, but IgG1 level was significantly lowered in the TCDD-exposed, indicating a TCDD-mediated functional alteration of B cells. Significantly enhanced level of IgE in plasma, a hallmark of dermal or respiratory allergic response, was also observed in the TCDD-exposed compared with that of the control. Elevated generation of IL-4 and IL-10 was resulted from in vitro stimulation of T cells with PMA plus ionomycin or PHA, respectively, from the TCDD-exposed in comparison to those of the control, suggesting a skewed type-2 response. In addition, the level of IFN${\gamma}$, a multifunctional cytokine for T cell-mediated immunity, was lowered in the TCDD-exposed with upregulation of tumor necrosis factor $\alpha$. The present study suggests that TCDD exposure disturbs immunohomeostasis in humans observed as an aberrant plasma IgE and IgG1 levels and dysregulation of T cell activities.

  • PDF

The Effects of Pro-inflammatory Cytokines by Cisplatin on the Death of Sensory Hair Cells. (시스플라틴에 의한 염증성 사이토카인의 청각유모세포 사멸 효과)

  • Lee, Jeong-Han;Park, Chan-Ny;Park, Rae-Kil
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.542-549
    • /
    • 2008
  • Cisplatin (cis-diamminedichloroplatinum II : CDDP) is the most widely used anticancer drug against a variety of human neoplasms. However, its clinical use is limited by the onset of severe side effects, including ototoxicity and nephrotoxicity. Even though a number of evidences in cytotoxic mechanism of cisplatin have been suggested, the role of pro-inflammatory cytokines in cisplatin cytotoxicity of auditory cells has not yet been demonstrated. Herein our data clearly demonstrated that cisplatin decreased the viability of HEI-OC1 auditory cells, which was inhibited by the addition of neutralizing $anti-TNF-{\alpha}$, $anti-IL-1{\beta}$ and anti-IL-6 antibodies. Consistently, Neutralization with antibodies against pro-inflammatory cytokines ameliorated the cell death and disarrangement of cochlea hair cell layers in the rat primary cochlear explants which were treated with cisplatin. Furthermore, exogeneous supplementation with free radical scavengers, including GSH and NAC, significantly prevented the cytotoxicity of cisplatin in the rat primary cochlea explants. We also observed that $TNF-{\alpha}$ was predominantly expressed in Deiters and Hensen's cells located in hair cell zone of cisplatin-treated cochlear explants. These findings suggest that pro-inflammatory cytokines, including $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6, may play a pivotal role in the pathophysiology of hair cell damages caused by ototoxic drug cisplatin.

Antioxidant activities of brown beech mushroom (Hypsizygus marmoreus) pileus and stipe (갈색 느티만가닥버섯 추출물의 부위별 항산화 활성)

  • Park, Min Jeong;Yu, Chan Yeol;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.19 no.4
    • /
    • pp.322-328
    • /
    • 2021
  • This study was carried out to evaluate potential of Hypsizygus marmoreus (brown cultivar) as a functional food and drug materials. H. marmoreus were divided into pileus and stipe and extracted in hot water and 80% ethanol. The total polyphenol content was highest in the hot water extracts (pileus 17.15±0.19 mg of GAE g, stipe 7.37±0.16 mg of GAE/g) and pileus compared to the ethanol extracts (pileus 10.23±0.14 mg of GAE/g, stipe 3.76.±0.19 mg of GAE/g) and stipe. Also, hot water extracts of pileus from H. marmoreus (brown cultivar) was more effective DPPH, ABTS, ORAC value, reducing power than ethanol extracts and stipe extracts. The pileus and stipe extracts were confirmed to be non-cytotoxic in the mouse macrophage cell line RAW 264.7 determined by WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulphonate) assay. Overall, extracts of H. marmoreus (brown cultivar) was higher antioxidant activity than other mushrooms, and no cytotoxicity. Therefore, H. marmoreus (brown cultivar) showed potential as a functional food and drug materials. The brown cultivar of H. marmoreus have higher antioxidant activity than white cultivar, H. marmoreus seem to have different antioxidant activity depending on the cultivar.