• 제목/요약/키워드: Cytoskeletal Inhibitors

검색결과 6건 처리시간 0.01초

E. coli lipopolysaccharides로 유도된 사람 호중구에서 CD14, Toll-like receptors, cytoskeletal inhibitors 그리고 $NF-{\kappa}B$ inhibitor가 MMP-8 분비에 미치는 영향 (Effect of CD14, Toll-like receptors, cytoskeletal inhibitors and $NF-{\kappa}B$ inhibitor on MMP-8 release from human neutrophils induced by E. coli lipopolysaccharides.)

  • 양승민;김태일;설양조;이용무;구영;정종평;한수부;류인철
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.427-436
    • /
    • 2005
  • Objective: MMP-8 is a neutrophil enzyme and its level increases in some inflammatory diseases, including periodontal disease. We knew that the lipopolysaccharide of E.coli(E-LPS) induced MMP-8 release from human neutrophils. E-LPS is known to induce the production and release of inflammatory cytokines through CD14, Toll-like receptor(TLR). In the present study, we investigated whether MMP-8 release by E-LPS is induced via CD14-TLR pathway and the cellular mechanism of MMP-8 release in human neutrophils. Material and methods: Human neutrophils were isolated from the peripheral blood of healthy donors and pre-incubated in medium containing antibodies against CD14, anti-TLR2 and anti-TLR4 or several inhibitors of microtubules and microfilaments and then incubated with E-LPS. The cells were treated TPCK and E-LPS simultaneously. The MMP-8amount in the culture medium was determined using ELISA. Results: E-LPS increased MMP-8release from neutrophils and its induction was inhibited by anti-CD14 and anti-TLR4 but not by anti-TLR2 antibodies. The inhibitors of microtubule and microfilament polymerization significantly decreased E-LPS-induced MMP-8release. TPCK inhibited E-LPS-induced MMP-8 release. Conclusion: These results suggest that MMP-8 release is induced by E-LPS via the CD14-TLR4 signal pathway in human neutrophils and may be depedent on microtubule and microfilament systems and $NF-{\kappa}B$ pathway.

계배 근원세포의 분화에 따른 세포 골격 단백질의 분해와 막 융합에 대한 Calpeptin의 억제 효과 (Calpeptin Blocks Myogenic Time-dependent Loss of Cytoskeletal Proteins and Membrane Fusion of Chick Embryonic Myoblasts)

  • 곽규봉;김혜선;전영주;박영순;정진하;하두봉
    • 한국동물학회지
    • /
    • 제36권3호
    • /
    • pp.342-346
    • /
    • 1993
  • 배양 근원세포의 세포 골격 단백질의 양이 분화과정에 따라 점차 감소하는 것으로 나타났다. 이러한 세포 골격 단백질의 분해는, 세포막에 투과성을 나타내는 calpain의 저해제인 calpeptin의 처리에 의하여 억제될 수 있었다. 또한, calpeptin은 특정 세포 골격 단백질의 분해를 제한적으로 억제하였으나, 전체적인 세포 단백질의 양상에는 별 영향을 주지 않았다. 뿐만 아니라, calpeptin은 농도 의존적으로 근원세포의 융합을 억제하였다. 반면에, calpain의 강력한 저해제이지만 세포막에 투과성을 보이지 않는 E-64는 세포 골격 단백질의 분해와 막 융합에 아무런 효과를 나타내지 못하였다. 이러한 결과는 calpain이 근세포 분화 시기에 따라 세포 골격 단백질의 분해를 촉매하며, 이 분해 과정은 근원세포 융합에 필연적인 것으로 추측된다. 또한, 이 결과는 calpain 저해제들의 선별적 효과가 그들의 세포막에 대한 투과성에 기인함을 시사한다.

  • PDF

Development of Inhibitors of $\beta$-Amyloid Plaque Formation

  • Kim, Dong-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2006년도 Spring Conference
    • /
    • pp.123-135
    • /
    • 2006
  • Alzheimer's disease (AD) is the most common form of dementia in the aging population and is clinically characterized by a progressive loss of cognitive abilities. Pathologically, it is defined by the appearance of senile plaques - extracellular insoluble, congophilic protein aggregates composed of amyloid $\beta$ (A$\beta$) and neurofibrillary tangles (NFTs) - inyracellular lesions consisting of paired helical filaments from hyperphosphorylated cytoskeletal tau protein as described by Alois Alzheimer a century ago. These hallmarks still serve as the major criteria for a definite diagnosis of the disease. Consequently, one of the key strategy for drug development in this disease area focuses on reducing the concentration of cerebral A$\beta$ plaque by using substances that inhibit A$\beta$ fibril formation. We focused on developing inhibitors by synthesizing several kinds of aromatic molecules. The synthetic compounds were initially screened to evaluate the effective compound by tioflavin T fluorescence assay. The selected effective compounds were tested cytotoxicity and protective effect from A$\beta$-induced neuronal toxicity by cell based MTT assay with HT22 hippocampal neurons. The BBB permeability on effectors was also tested in in vitro co-culture model(HUVEC/C6 cell line). The behavior test wea carried out in mutant APP/PS1 transgenic mouse model of Alzheimer's disease. And inhibition of A$\beta$ fibril formation by the effective compound was monitored with transmitted electron microscopic images.

  • PDF

Developmental Regulation of the Peptide Hydrolyzing Activities of the Proteasome in Myogenic Differentiation

  • Chung Pil Joong;Woo Joo Hong;Kim Hye Sun
    • 대한의생명과학회지
    • /
    • 제10권3호
    • /
    • pp.179-186
    • /
    • 2004
  • We examined a role of proteasome, the non-lysosomal multicatalytic protease complex,on the differentiation of chick embryonic myoblasts in culture. The peptide hydrolyzing activities of proteasome were found to change; the hydrolyzing activity against N-succinyl-Leu-Leu- Val- Tyr-7 -amido-4-methy1coumarin (SLLVY-AMC) was prominent and increased with myogenic differentiation. Proteasome inhibitors, N-carbobenzoxy-Leu-Leu-norvalinal (MG115) and N-carbobenzoxy-Ile-Glu (O-t-butyl)-Ala-Leucinal (PSI), blocked membrane fusion of myoblasts as well as the SLLVY-AMC hydrolyzing activity. Those inhibitory activities of the agents occurred in parallel, but were reversible and both cell fusion and the peptidase activity were restored when the agents were withdrawn from the culture medium. On the other hand, the agents caused accumulation of the ubiquitinylated proteins in the cytoskeletal proteins. These results suggest that each of the peptide hydrolyzing activities of proteasome is independently regulated during the myogenic differentiation and the chymotrypsin-like activity may play an important role in that process.

  • PDF

Study on Chemicals for Post-activation in Porcine Somatic Cell Nuclear Transfer

  • Min, Kyuhong;Na, Seungwon;Lee, Euncheol;Kim, Ghangyong;Yu, Youngkwang;Roy, Pantu Kumar;Fang, Xun;Salih, MB;Cho, Jongki
    • 한국수정란이식학회지
    • /
    • 제31권2호
    • /
    • pp.131-136
    • /
    • 2016
  • Since the first success of animal cloning, somatic cell nuclear transfer presented various ideas in many research areas such as regenerative medicine. However, SCNT embryos has poor survival rate. Therefore, numerous researches carried out to enhance the developmental capability of porcine nuclear transfer embryos. Cytochalasin B, demecolcine, latrunculin A, cycloheximide and 6-dimethylaminopurine are efficient chemicals treated in post-activation procedure to increase the efficiency of SCNT. This review study is aim to investigate the effects of these chemicals applied to post-activation in porcine SCNT. Cytochalasin B, demecolcine, latrunculin A are cytoskeletal manuplators inhibit extrusion of pseudo-polar body. Cytochalasin B and demecolcine showed considerably higher blastocyst formation proportion (26-28%) compared to when they are not treated (16%). And when latrunculin A was treated for postactivation, blastocyst formation proportion was increased in SCNT embryos exposed to LA (38%) than those in control (14%). On the other hand, cycloheximide and 6-dimethylaminopurine are protein synthesis and kinase inhibitors. And they help to maintain $Ca^{2+}$ fluctuation in oocytes. Cleavage and blastocyst rates of NT embryos were increased when they were exposed to CHX (16.9% and 5.4% with no CHX).And 6-DMAP also showed higher blastocyst formation (21.5% compared to 15.7%, control). Although all these chemicals have different mechanisms, they showed developmental competence enhancement in NT embryos. However, there are only few studies comparing each chemical's post-activation effect. Therefore, further research and study should be conducted to find optimal chemical for improving the efficiency of SCNT.

해마추상체 신경세포에서 칼슘에 의한 신경섬유 성장억제에 대한 칼파인 억제제의 영향 (Effect of Calpain Inhibitors on $Ca^{2+}-Induced$ Suppression of Neurite Outgrowth in Isolated Hippocampal Pyramidal Neurons)

  • 송동근
    • 대한약리학회지
    • /
    • 제29권2호
    • /
    • pp.165-174
    • /
    • 1993
  • 칼슘이온은 신경섬유 성장의 중요한 조절인자이나 그 정확한 작용기전은 불명확하다. 세포골격 단백은 in vivo 및 in vitro에서 칼슘의존성 단백분해효소(칼파인)에 의해 신속히 분해되므로, 칼슘이온에 의한 신경섬유의 퇴행에 있어서 칼파인의 관련성을 추구하기위하여, 배양된 해마신경세포에서 칼슘이온 ionophore인 A23187에 의한 신경섬유의 성장억제가 칼파인의 억제제인 EST 및 MDL 28170에 의해 차단되는지를 조사하였다. A23187은 100nM의 농도에서 축삭에는 영향이 없이 수상돌기의 퇴행을 유발하였으나, 300 nM의 농도에서는 축삭의 성장을 억제하였다. EST(5 혹은 20 uM) 및 MDL 28170(20 uM)은 100 nM A23187의 수상돌기에 대한 작용과 300 nM A23187의 축삭에 대한 작용을 효과적으로 차단하였다. EST는 A23187에의한 세포내 칼슘이온의 증가를 차단하지 못하였다. 이상의 결과는 해마추상체세포에서 칼슘에 의한 신경섬유의 퇴행이 칼파인에 의해 매개됨을 시사한다.

  • PDF