• 제목/요약/키워드: Cytokine-cytokine Receptor

검색결과 276건 처리시간 0.024초

Expression of peroxisome proliferator-activated receptor (PPAR)-${\alpha}$ and PPAR-${\gamma}$ in the lung tissue of obese mice and the effect of rosiglitazone on proinflammatory cytokine expressions in the lung tissue

  • Ryu, Seung Lok;Shim, Jae Won;Kim, Duk Soo;Jung, Hye Lim;Park, Moon Soo;Park, Soo-Hee;Lee, Jinmi;Lee, Won-Young;Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • 제56권4호
    • /
    • pp.151-158
    • /
    • 2013
  • Purpose: We investigated the mRNA levels of peroxisome proliferator-activated receptor (PPAR)-${\alpha}$, PPAR-${\gamma}$, adipokines, and cytokines in the lung tissue of lean and obese mice with and without ovalbumin (OVA) challenge, and the effect of rosiglitazone, a PPAR-${\gamma}$ agonist. Methods: We developed 6 mice models: OVA-challenged lean mice with and without rosiglitazone; obese mice with and without rosiglitazone; and OVA-challenged obese mice with and without rosiglitazone. We performed real-time polymerase chain reaction for leptin, leptin receptor, adiponectin, vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-${\alpha}$, transforming growth factor (TGF)-${\beta}$, PPAR-${\alpha}$ and PPAR-${\gamma}$ from the lung tissue and determined the cell counts and cytokine levels in the bronchoalveolar lavage fluid. Results: Mice with OVA challenge showed airway hyperresponsiveness. The lung mRNA levels of PPAR${\alpha}$ and PPAR-${\gamma}$ increased significantly in obese mice with OVA challenge compared to that in other types of mice and decreased after rosiglitazone administeration. Leptin and leptin receptor expression increased in obese mice with and without OVA challenge and decreased following rosiglitazone treatment. Adiponectin mRNA level increased in lean mice with OVA challenge. Lung VEGF, TNF-${\alpha}$, and TGF-${\beta}$ mRNA levels increased in obese mice with and without OVA challenge compared to that in the control mice. However, rosiglitazone reduced only TGF-${\beta}$ expression in obese mice, and even augmented VEGF expression in all types of mice. Rosiglitazone treatment did not reduce airway responsiveness, but increased neutrophils and macrophages in the bronchoalveolar lavage fluid. Conclusion: PPAR-${\alpha}$ and PPAR-${\gamma}$ expressions were upregulated in the lung tissue of OVA-challenged obese mice however, rosiglitazone treatment did not downregulate airway inflammation in these mice.

Cooperative Interactions between Toll-Like Receptor 2 and Toll-Like Receptor 4 in Murine Klebsiella pneumoniae Infections

  • Jeon, Hee-Yeon;Park, Jong-Hyung;Park, Jin-Il;Kim, Jun-Young;Seo, Sun-Min;Ham, Seung-Hoon;Jeong, Eui-Suk;Choi, Yang-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권8호
    • /
    • pp.1529-1538
    • /
    • 2017
  • Klebsiella pneumoniae is an opportunistic and clinically significant emerging pathogen. We investigated the relative roles of Toll-like receptor (TLR) 2 and TLR4 in initiating host defenses against K. pneumoniae. TLR2 knockout (KO), TLR4 KO, TLR2/4 double KO (DKO), and wild-type (WT) mice were inoculated with K. pneumoniae. Mice in each group were sacrificed after either 12 or 24h, and the lungs, liver, and blood were harvested to enumerate bacterial colony-forming units (CFU). Cytokine and chemokine levels were analyzed using enzyme-linked immunosorbent assay and real-time PCR, and pneumonia severity was determined by histopathological analysis. Survival was significantly shortened in TLR4 KO and TLR2/4 DKO mice compared with that of WT mice after infection with $5{\times}10^3CFU$. TLR2 KO mice were more susceptible to infection than WT mice after exposure to a higher infectious dose. Bacterial burdens in the lungs and liver were significantly higher in TLR2/4 DKO mice than in WT mice. Serum $TNF-{\alpha}$, MCP-1, MIP-2, and nitric oxide levels were significantly decreased in TLR2/4 DKO mice relative to those in WT mice, and TLR2/4 DKO mice showed significantly decreased levels of $TNF-{\alpha}$, IL-6, MCP-1, and inducible nitric oxide synthase mRNA in the lung compared with those in WT mice. Collectively, these data indicate that TLR2/4 DKO mice were more susceptible to K. pneumoniae infection than single TLR2 KO and TLR4 KO mice. These results suggest that TLR2 and TLR4 play cooperative roles in lung innate immune responses and bacterial dissemination, resulting in systemic inflammation during K. pneumoniae infection.

Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

  • Reddy, Kondreddy Eswar;Lee, Woong;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Woon;Yu, Dongjo;Cho, Ara;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.138-148
    • /
    • 2018
  • Objective: Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods: Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results: A total of 186 differentially expressed genes (DEGs) were screened (120 upregulated and 66 downregulated). Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE), tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4), proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8), and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, ${\alpha}$-aminoadipic semialdehyde dehydrogenase, Ig lambda chain c region, pyruvate dehydrogenase kinase, isozyme 4, carboxylesterase 1), were suppressed by DON and ZEN. Conclusion: In summary, our results indicate that high concentrations of DON and ZEN suppress the inflammatory response in kidneys, leading to potential effects on immune homeostasis.

An inhibitory alternative splice isoform of Toll-like receptor 3 is induced by type I interferons in human astrocyte cell lines

  • Seo, Jin-Won;Yang, Eun-Jeong;Kim, Se Hoon;Choi, In-Hong
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.696-701
    • /
    • 2015
  • Toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA. It stimulates pro-inflammatory cytokine and interferon production. Here we reported the expression of a novel isoform of TLR3 in human astrocyte cell lines whose message is generated by alternative splicing. The isoform represents the N-terminus of the protein. It lacks many of the leucine-rich repeat domains, the transmembrane domain, and the intracellular Toll/interleukin-1 receptor domain of TLR3. Type I interferons (interferon-α and interferon-β) induced the expression of this isoform. Exogenous overexpression of this isoform inhibited interferon regulatory factor 3, signal transducers and activators of transcription 1, and Inhibitor of kappa B α signaling following stimulation. This isoform of TLR3 also inhibited the production of chemokine interferon-γ-inducible protein 10. Our study clearly demonstrated that the expression of this isoform of TLR3 was a negative regulator of signaling pathways and that it was inducible by type I interferons. We also found that this isoform could modulate inflammation in the brain.

Signaling for Synergistic Activation of Natural Killer Cells

  • Kwon, Hyung-Joon;Kim, Hun Sik
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.240-246
    • /
    • 2012
  • Natural killer (NK) cells play a pivotal role in early surveillance against virus infection and cellular transformation, and are also implicated in the control of inflammatory response through their effector functions of direct lysis of target cells and cytokine secretion. NK cell activation toward target cell is determined by the net balance of signals transmitted from diverse activating and inhibitory receptors. A distinct feature of NK cell activation is that stimulation of resting NK cells with single activating receptor on its own cannot mount natural cytotoxicity. Instead, specific pairs of co-activation receptors are required to unleash NK cell activation via synergy- dependent mechanism. Because each co-activation receptor uses distinct signaling modules, NK cell synergy relies on the integration of such disparate signals. This explains why the study of the mechanism underlying NK cell synergy is important and necessary. Recent studies revealed that NK cell synergy depends on the integration of complementary signals converged at a critical checkpoint element but not on simple amplification of the individual signaling to overcome intrinsic activation threshold. This review focuses on the signaling events during NK cells activation and recent advances in the study of NK cell synergy.

Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function

  • Lee, Chang-Hee;Chun, Taehoon
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Macrophage is an important innate immune cell that not only initiates inflammatory responses, but also functions in tissue repair and anti-inflammatory responses. Regulating macrophage activity is thus critical to maintain immune homeostasis. Tyro3, Axl, and Mer are integral membrane proteins that constitute TAM family of receptor tyrosine kinases (RTKs). Growing evidence indicates that TAM family receptors play an important role in anti-inflammatory responses through modulating the function of macrophages. First, macrophages can recognize apoptotic bodies through interaction between TAM family receptors expressed on macrophages and their ligands attached to apoptotic bodies. Without TAM signaling, macrophages cannot clear up apoptotic cells, leading to broad inflammation due to over-activation of immune cells. Second, TAM signaling can prevent chronic activation of macrophages by attenuating inflammatory pathways through particular pattern recognition receptors and cytokine receptors. Third, TAM signaling can induce autophagy which is an important mechanism to inhibit NLRP3 inflammasome activation in macrophages. Fourth, TAM signaling can inhibit polarization of M1 macrophages. In this review, we will focus on mechanisms involved in how TAM family of RTKs can modulate function of macrophage associated with anti-inflammatory responses described above. We will also discuss several human diseases related to TAM signaling and potential therapeutic strategies of targeting TAM signaling.

Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4+ T Cell Lineages

  • Min-Hee Kim;Chang-Woo Lee
    • IMMUNE NETWORK
    • /
    • 제23권2호
    • /
    • pp.12.1-12.17
    • /
    • 2023
  • Ssu72, a dual-specificity protein phosphatase, not only participates in transcription biogenesis, but also affects pathophysiological functions in a tissue-specific manner. Recently, it has been shown that Ssu72 is required for T cell differentiation and function by controlling multiple immune receptor-mediated signals, including TCR and several cytokine receptor signaling pathways. Ssu72 deficiency in T cells is associated with impaired fine-tuning of receptor-mediated signaling and a defect in CD4+ T cell homeostasis, resulting in immune-mediated diseases. However, the mechanism by which Ssu72 in T cells integrates the pathophysiology of multiple immune-mediated diseases is still poorly elucidated. In this review, we will focus on the immunoregulatory mechanism of Ssu72 phosphatase in CD4+ T cell differentiation, activation, and phenotypic function. We will also discuss the current understanding of the correlation between Ssu72 in T cells and pathological functions which suggests that Ssu72 might be a therapeutic target in autoimmune disorders and other diseases.

Mouse neutrophils express functional umami taste receptor T1R1/T1R3

  • Lee, NaHye;Jung, Young Su;Lee, Ha Young;Kang, NaNa;Park, Yoo Jung;Hwang, Jae Sam;Bahk, Young Yil;Koo, JaeHyung;Bae, Yoe-Sik
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.649-654
    • /
    • 2014
  • Neutrophils play an important role in the initiation of innate immunity against infection and injury. Although many different types of G-protein coupled receptors are functionally expressed in neutrophils, no reports have demonstrated functional expression of umami taste receptor in these cells. We observed that mouse neutrophils express the umami taste receptor T1R1/T1R3 through RNA sequencing and quantitative RT-PCR analysis. Stimulation of mouse neutrophils with L-alanine or L-serine, which are ligands for the umami taste receptor, elicited not only ERK or p38 MAPK phosphorylation but also chemotactic migration. Moreover, addition of L-alanine or L-serine markedly reduced the production of several cytokines including $TNF-{\alpha}$ induced by lipopoly-saccharide (LPS) through inhibition of $NF-{\kappa}B$ activity or STAT3 phosphorylation in neutrophils. Our findings demonstrate that neutrophils express the umami taste receptor, through which tastants stimulate neutrophils, resulting in chemotactic migration, and attenuation of LPS-induced inflammatory response.

IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance

  • Dong Hyun Kim;Won-Woo Lee
    • IMMUNE NETWORK
    • /
    • 제24권3호
    • /
    • pp.21.1-21.16
    • /
    • 2024
  • IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.

Putative proinflammatory cytokine유전자의 발현양상과 수용체 분자의 cloing (GENE EXPRESSION CHARACTERISTICS OF PUTATIVE PROINFLAMMATORY CYTOKINES AND RECEPTOR MOLECULE CLONING)

  • 오귀옥;송요한;서영석;이동환;문대희;김형섭
    • Journal of Periodontal and Implant Science
    • /
    • 제24권3호
    • /
    • pp.472-482
    • /
    • 1994
  • Cytokines expressed specifically in leukocytes subsets and in activated cells, which are involved in chemotaxis and activation of leukocytes, are recently defined as chemokines. Macrophage inflammatory $protein-1{\alpha}(MIP-1{\alpha})$ and $MIP-1{\beta}$ are members of C-C chemokine subfamily which produces wide immunomodulatory, proinflammatory, and hematopoietic modulatory actions. We have studied their gene expression by using Northern blot analysis in various blood cells such as cytolytic T lymphocyte(CTL), helper T lymphocyte(HTL), macrophage, and B lymphocyte. Resting CTL line CTLL-R8 expressed $MIP-1{\alpha}$ mRNA which was downregulated by ConA stimulation. Both of resting and ConA stimulated HTL line Hut78 and Jurkat did not express $MIP-1{\alpha}$ mRNA. There was detectable $MIP-1{\alpha}$ transcript in HTL hybridoma 2B4.11 which was a little upstimulated by ConA stimulation. B cell line 230, and macrophage cell line RAW264.7 and WR19M.1 showed distinct $MIP-1{\alpha}$ message which were induced after LPS stimulation. Expression pattern of $MIP-1{\beta}$ in all cell lines or cell were almost identical to that of $MIP-1{\alpha}$. Also strategies employed to identify and characterize the biological functions was preceded by receptor cloning to trace the shorcut to the final goal of cytokine research. For the cloning of $MIP-1{\alpha}$ receptor(R), we used synthetic oligonucleotides of transmembrane(T) conserved sequences of already cloned human(h) IL-8-R, and performed reverse transcription-polymerase chain reaction(RT-PCR) amplification using murine(m) macrophage cell line mRNA. Among 5RT-PCR products, we isolated a homologous cDNA with hIL-8-R which were shown to be putative mIL-8-R cDNA.

  • PDF