• Title/Summary/Keyword: Cytochrome oxidase subunit I gene (COI)

Search Result 58, Processing Time 0.025 seconds

Analysis of genetic differentiation and population structure of the Korean-peninsula-endemic genus, Semisulcospira, using mitochondrial markers

  • Eun-Mi Kim;Yeon Jung Park;Hye Min Lee;Eun Soo Noh;Jung-Ha Kang;Bo-Hye Nam;Young-Ok Kim;Tae-Jin Choi
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.12
    • /
    • pp.601-618
    • /
    • 2022
  • The genus Semisulcospira is an economically and ecologically valuable freshwater resource. Among the species, Semisulcospira coreana, Semisulcospira forticosta and Semisulcospira tegulata are endemic to the Korean peninsula and Semisulcospira gottschei is widespread in Asia. Therefore, maintenance and conservation of wild populations of these snails are important. We investigated the genetic diversity and population structure of Semisulcospira based on the mitochondrial cytochrome c oxidase subunit I (COI), NADH dehydrogenase subunit 4 (ND4), and combined mitochondrial DNA (COI + ND4) sequences. All four species and various genetic makers showed a high level of haplotype diversity and a low level of nucleotide diversity. In addition, Fu's Fs and Tajima's D neutrality tests were performed to assess the variation in size among populations. Neutrality tests of the four species yielded negative Fu's Fs and Tajima's D values, except for populations with one haplotype. The minimum spanning network indicated a common haplotype for populations of S. coreana, S. tegulata and S. gottschei, whereas S. forticosta had a rare haplotype. Also, genetic differences and gene flows between populations were assessed by analysis of molecular variance and using the pairwise fixation index. Our findings provided insight into the degree of preservation of the species' genetic diversity and could be utilized to enhance the management of endemic species.

Molecular Identification and Bimonthly Abundance of Fish Eggs Collected in the Coastal Waters of Sagye, Jejudo Island (제주도 사계연안 어란의 분자동정과 격월별 출현양상)

  • Han, Song-Hun;Kim, Maeng Jin;Kim, Joon Sang;Song, Choon Bok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.829-836
    • /
    • 2017
  • This study investigated the species composition and abundance of floating fish eggs to determine the timing and location of spawning of fish inhabiting the coastal waters of Sagye, Jejudo Island. Eggs were collected with a Bongo net bimonthly from May 2009 to February 2010. Identifications were based on nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Eggs were determined to belong to 43 distinct taxa, 35 of which were identified to the species level. The assemblage spanned eight orders, 23 families, and 32 genera. The number of taxa collected varied from month to month, with 14 taxa (12 species) found in June 2009, 11 taxa (10 species) in October 2009, 10 taxa (nine species) each in August 2009 and February 2010, eight taxa (six species) in April 2009, and five taxa (four species) in December 2009. Five abundant species (Branchiostegus japonicus, Engraulis japonicus, Pseudolabrus sieboldi, Goniistius zonatus, and Halichoeres tenuispinis) together represented 52.8% of the total number of eggs collected during the study.

The phylogeographic history of amphitropical Callophyllis variegata (Florideophyceae, Rhodophyta) in the Pacific Ocean

  • Bringloe, Trevor T.;Macaya, Erasmo C.;Saunders, Gary W.
    • ALGAE
    • /
    • v.34 no.2
    • /
    • pp.91-97
    • /
    • 2019
  • Chilean species of marine macroalgae with amphitropical distributions oftentimes result from introductions out of the Northern Hemisphere. This possibility was investigated using haplotype data in an amphitropical red macroalgae present in Chile, Callophyllis variegata. Published sequence records from Canada and the United States were supplemented with new collections from Chile (April 2014-November 2015). Specimens of C. variegata were amplified for the 5′ end of the cytochrome c oxidase subunit I gene (COI-5P) and the full length nuclear internal transcribed spacer region. Haplotype networks and biogeographic distributions were used to infer whether C. variegata was introduced between hemispheres, and several population parameters were estimated using IMa2 analyses. C. variegata displayed a natural amphitropical distribution, with an isolation time of approximately 938 ka between hemispheres. It is hypothesized that contemporary populations of C. variegata were established from a refugial population during the late Pleistocene, and may have crossed the tropics via rafting on buoyant species of kelp or along deep-water refugia coincident with global cooling, representing a rare case of a non-human mediated amphitropical distribution.

Vertical Distribution of Icthyoplankton in the Southern Waters of Jeju Island During Spring (봄철 제주 남부해역 난·자치어의 수직 분포)

  • Lee, Bo-Ram;Ji, Hwan-Sung;Yu, Hyo-Jae;Hwang, Kang-Seok;Kim, Doo-Nam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.2
    • /
    • pp.146-153
    • /
    • 2022
  • The vertical distribution and abundance of icthyoplankton in the southern waters of Jeju Island during June 2020 were investigated. Fish eggs and larvae were identified using the mitochondrial DNA cytochrome c oxidase subunit I (mtDNA COI) and the 16S rRNA gene. During this period, fish eggs of 23 taxa belonging to 21 families and larvae of 27 taxa belonging to 25 families were collected. Fish eggs were located mostly from the surface to 30 m depth of the water column. Larvae were located from the surface to 80 m depth of the water column. Vertical distributions of fish eggs and larvae were influenced by oceanography conditions such as temperature, salinity, and thermocline depth. No discernible difference in mean thermocline depth was observed between day and night.

Application for Identification of Food Raw Materials by PCR using Universal Primer (일반 프라이머를 이용한 PCR의 식품원료 진위 판별에 적용)

  • Park, Yong-Chjun;Jin, Sang-Ook;Lim, Ji-Young;Kim, Kyu-Heon;Lee, Jae-Hwang;Cho, Tae-Yong;Lee, Hwa-Jung;Han, Sang-Bae;Lee, Sang-Jae;Lee, Kwang-Ho;Yoon, Hae-Seong
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.317-324
    • /
    • 2012
  • In order to determine an authenticity of food ingredient, we used DNA barcode method by universal primers. For identification of animal food ingredients, LCO1490/HCO2198 and VF2/FISH R2 designed for amplifying cytochrome c oxidase subunit1 (CO1) region and L14724/H15915 for cytochrome b (cyt b) region on mitochondrial DNA were used. Livestock (cow, pig, goat, sheep, a horse and deer) was amplified by LCO1490/HCO 2198, VF2/FISH R2 and L14724/H15915 primers. Poultry (chicken, duck, turkey and ostrich) was amplified by LCO1490/HCO 2198 and VF2/FISH R2 primers. But, Fishes (walleye pollack, herring, codfish, blue codfish, trout, tuna and rockfish) were only amplified by VF2/FISH R2 primers. For plant food ingredients, 3 types of primers (trnH/psbA, rpoB 1F/4R and rbcL 1F/724R) have been used an intergenic spacer, a RNA polymerase beta subunit and a ribulose bisphosphate carboxylase region on plastid, respectively. Garlic, onion, radish, green tea and spinach were amplified by trnH/psbA, rpoB 1F/4R and rbcL 1F/724R. The PCR product sizes were same by rpoB 1F/4R and rbcL 1F/724R but, the PCR product size using trnH/psbA primer was different with others for plants each. We established PCR condition and universal primer selection for 17 item's raw materials for foods and determine base sequences aim to PCR products in this study. This study can apply to determine an authenticity of foods through making an comparison between databases and base sequences in gene bank. Therefore, DNA barcode method using universal primers can be a useful for species identification techniques not only raw materials but also processed foods that are difficult to analyze by chemical analysis.

Pelagic larval dispersal habits influence the population genetic structure of clam Gomphina aequilatera in China

  • Ye, Yingying;Fu, Zeqin;Tian, Yunfang;Li, Jiji;Guo, Baoying;Lv, Zhenming;Wu, Changwen
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1213-1223
    • /
    • 2018
  • Pelagic larval dispersal habits influence the population genetic structure of marine mollusk organisms via gene flow. The genetic information of the clam Gomphina aequilatera (short larval stage, 10 days) which is ecologically and economically important in the China coast is unknown. To determine the influence of planktonic larval duration on the genetic structure of G. aequilatera. Mitochondrial markers, cytochrome oxidase subunit i (COI) and 12S ribosomal RNA (12S rRNA), were used to investigate the population structure of wild G. aequilatera specimens from four China Sea coastal locations (Zhoushan, Nanji Island, Zhangpu and Beihai). Partial COI (685 bp) and 12S rRNA (350 bp) sequences were determined. High level and significant $F_{ST}$ values were obtained among the different localities, based on either COI ($F_{ST}=0.100-0.444$, P<0.05) or 12S rRNA ($F_{ST}=0.193-0.742$, P<0.05), indicating a high degree of genetic differentiation among the populations. The pairwise $N_m$ between Beihai and Zhoushan for COI was 0.626 and the other four pairwise $N_m$ values were >1, indicating extensive gene flow among them. The 12S rRNA showed the same pattern. AMOVA test results for COI and 12S rRNA indicated major genetic variation within the populations: 77.96% within and 22.04% among the populations for COI, 55.73% within and 44.27% among the populations for 12S rRNA. A median-joining network suggested obvious genetic differentiation between the Zhoushan and Beihai populations. This study revealed the extant population genetic structure of G. aequilatera and showed a strong population structure in a species with a short planktonic larval stage.

Development and Validation of Real-time PCR to Determine Branchiostegus japonicus and B. albus Species Based on Mitochondrial DNA (Real-time PCR 분석법을 이용한 옥돔과 옥두어의 종 판별법 개발)

  • Chung, In Young;Seo, Yong Bae;Yang, Ji-Young;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1331-1339
    • /
    • 2017
  • DNA barcoding is the identification of a species based on the DNA sequence of a fragment of the cytochrome C oxidase subunit I (COI) gene in the mitochondrial genome. It is widely applied to assist with the sustainable development of fishery-product resources and the protection of fish biodiversity. This study attempted to verify horse-head fish (Branchiostegus japonicus) and fake horse-head fish (Branchiostegus albus) species, which are commonly consumed in Korea. For the validation of the two species, a real-time PCR method was developed based on the species' mitochondrial DNA genome. Inter-species variations in mitochondrial DNA were observed in a bioinformatics analysis of the mitochondrial genomic DNA sequences of the two species. Some highly conserved regions and a few other regions were identified in the mitochondrial COI of the species. In order to test whether variations in the sequences were definitive, primers that targeted the varied regions of COI were designed and applied to amplify the DNA using the real-time PCR system. Threshold-cycle (Ct) range results confirmed that the Ct ranges of the real-time PCR were identical to the expected species of origin. Efficiency, specificity and cross-reactivity assays showed statistically significant differences between the average Ct of B. japonicus DNA ($21.85{\pm}3.599$) and the average Ct of B. albus DNA ($33.49{\pm}1.183$) for confirming B. japonicus. The assays also showed statistically significant differences between the average Ct of B. albus DNA ($22.49{\pm}0.908$) and the average Ct of B. japonicus DNA ($33.93{\pm}0.479$) for confirming B. albus. The methodology was validated by using ten commercial samples. The genomic DNA-based molecular technique that used the real-time PCR was a reliable method for the taxonomic classification of animal tissues.

Development of Species-Specific PCR Primers for the Rapid and Simultaneous Identification of the Six Species of Genus Takifugu

  • Dong, Chun Mae;Park, Yeon Jung;Noh, Jae Koo;Noh, Eun Soo;An, Cheul Min;Kang, Jung-Ha;Park, Jung Youn;Kim, Eun-Mi
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2019
  • Pufferfish (Takifugu spp.) are economically important edible marine fish. Mistakes in pufferfish classification can lead to poisoning; therefore, accurate species identification is critical. In this study, we used the mtDNA cytochrome c oxidase subunit I gene (COI) to design specific primers for six Takifugu species among the 21 domestic or imported pufferfish species legally sold for consumption in Korea. We rapidly and simultaneously identified these pufferfish species using a highly efficient, multiplex polymerase chain reaction (PCR) system with the six species-specific primers. The results showed that species-specific multiplex PCR (multiplex species-specific polymerase chain reaction; MSS-PCR) either specifically amplified PCR products of a unique size or failed. MSS-PCR yielded amplification fragment lengths of 897 bp for Takifugu pardalis, 822 bp for T. porphyreus, 667 bp for T. niphobles, 454 bp for T. poecilonotus, 366 bp for T. rubripes, and 230 bp for T. xanthpterus using the species-specific primers and a control primer (ca. 1,200 bp). We visualized the results using agarose gel electrophoresis to obtain accurate contrasts of the six Takifugu species. MSS-PCR analysis is easily performed and provides identification results within 6 h. This technique is a powerful tool for the discrimination of Takifugu species and will help prevent falsified labeling, protect consumer rights, and reduce the risk of pufferfish poisoning..

DNA barcoding of fish diversity from Batanghari River, Jambi, Indonesia

  • Huria Marnis;Khairul Syahputra;Jadmiko Darmawan;Dwi Febrianti;Evi Tahapari;Sekar Larashati;Bambang Iswanto;Erma Primanita Hayuningtyas Primanita;Mochamad Syaifudin;Arsad Tirta Subangkit
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.87-99
    • /
    • 2024
  • Global climate change, followed by an increase in anthropogenic activities in aquatic ecosystems, and species invasions, has resulted in a decline in aquatic organism biodiversity. The Batanghari River, Sumatra's longest river, is polluted by mercury-containing illegal gold mining waste (PETI), industrial pollution, and domestic waste. Several studies have provided evidence suggesting a decline in fish biodiversity within the Batanghari River. However, a comprehensive evaluation of the present status of biodiversity in this river is currently lacking. The species under investigation were identified through various molecular-based identification methods, as well as morphological identification, which involved the use of neighbor-joining (NJ) trees. All collected specimens were initially identified using morphological techniques and subsequently confirmed with molecular barcoding analysis. Morphological and DNA barcoding identification categorized all specimens (1,692) into 36 species, 30 genera and 16 families, representing five orders. A total of 36 DNA barcodes were generated from 30 genera using a 650-bp-long fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene. Based on the Kimura two-parameter model (K2P), The minimum and maximum genetic divergences based on K2P distance were 0.003 and 0.331, respectively, and the average genetic divergence within genera, families, and orders was 0.05, 0.12, 0.16 respectively. In addition, the average interspecific distance was approximately 2.17 times higher than the mean intraspecific distance. Our results showed that the COI barcode enabled accurate fish species identification in the Batanghari River. Furthermore, the present work will establish a comprehensive DNA barcode library for freshwater fishes along Batanghari River and be significantly useful in future efforts to monitor, conserve, and manage fisheries in Indonesia.

Discordance between Morphological and Molecular Variations of the Genus Macroramphosus (Macroramphosidae) from Korea (한국산 대주둥치속(대주둥치과) 어류의 형태와 분자 변이의 불일치)

  • Sohn, Min-Soo;Kim, Jin-Koo
    • Korean Journal of Ichthyology
    • /
    • v.32 no.4
    • /
    • pp.199-209
    • /
    • 2020
  • In order to clarify the taxonomic status of the Korean Macroramphosus species, which were previously confused, we investigated morphological and molecular variations of Macroramphosus (18 individuals) from Korea, and Macroramphosus (35 individuals) from Japan and Taiwan, and compared with those of M. scolopax from type locality (Mediterranean Sea). Although the Korean and Japanese specimens of Macroramphosus were clearly divided into two types in the first dorsal spine length (22.8~32.1% in A-type vs. 15.6~21.4% in B-type), distance between the first dorsal fin and second dorsal fin (6.4~9.7% vs. 8.6~13.3%), and body depth (20.0~28.0% vs. 17.3~22.6%), no genetic differences among all individuals of longspine snipefish between them were found at the specific level [d=0.0~3.3% in control region (CR); 0.0~1.3% in cytochrome b (cytb); 0.0~0.5% in cytochrome c oxidase subunit I (COI)]. Whereas, they were well distinguished in genetics (9.9~11.5% in CR; 3.8~4.6% in cytb; 1.2~3.6% in COI) from those of M. scolopax in Mediterranean Sea. It needs the scientific name of the longspine snipefish (M. scolopax) in Korea be changed as M. japonicus (and/or M. sagifue). However, our results could not find evidence of consistency between morphological and mitochondrial DNA variations which suggests that their differentiation event may occur fairly recently. Further studies using more sensitive markers such as microsatellite are needed to clarify the degree of gene flow between the two types.