• 제목/요약/키워드: Cytochrome P-450 enzymes

검색결과 243건 처리시간 0.017초

Preferential Induction of CYP1A1 over CYP1B1 in Human Breast Cancer MCF-7 Cells after Exposure to Berberine

  • Wen, Chun-Jie;Wu, Lan-Xiang;Fu, Li-Juan;Shen, Dong-Ya;Zhang, Xue;Zhang, Yi-Wen;Yu, Jing;Zhou, Hong-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.495-499
    • /
    • 2014
  • Estrogens are considered the major breast cancer risk factor, and the carcinogenic potential of estrogens might be attributed to DNA modification caused by derivatives formed during metabolism. $17{\beta}$-estradiol ($E_2$), the main steroidal estrogen present in women, is metabolized via two major pathways: formation of 2-hydroxyestradiol (2-OH $E_2$) and 4-hydroxyestradiol ($4-OH\;E_2$) through the action of cytochrome P450 (CYP) 1A1 and 1B1, respectively. Previous reports suggested that $2-OH\;E_2$ has putative protective effects, while $4-OH\;E_2$ is genotoxic and has potent carcinogenic activity. Thus, the ratio of $2-OH\;E_2/4-OH\;E_2$ is a critical determinant of the toxicity of $E_2$ in mammary cells. In the present study, we investigated the effects of berberine on the expression profile of the estrogen metabolizing enzymes CYP1A1 and CYP1B1 in breast cancer MCF-7 cells. Berberine treatment produced significant induction of both forms at the level of mRNA expression, but with increased doses produced 16~ to 52~fold greater induction of CYP1A1 mRNA over CYP1B1 mRNA. Furthermore, berberine dramatically increased CYP1A1 protein levels but did not influence CYP1B1 protein levels in MCF-7 cells. In conclusion, we present the first report to show that berberine may provide protection against breast cancer by altering the ratio of CYP1A1/CYP1B1, could redirect $E_2$ metabolism in a more protective pathway in breast cancer MCF-7 cells.

Induction of Microsomal Epoxide Hydrolase, rGSTA2, rGSTA3/5, and rGSTM1 by Disulfiram, but not by Diethyldithiocarbamate, a Reduced Form of Disulfiram

  • Kim, Sang-Geon;Kim, Hye-Jung
    • Toxicological Research
    • /
    • 제13권4호
    • /
    • pp.339-347
    • /
    • 1997
  • Disulfiram (DSF) and diethyldithiocarbamate (DDC), a reduced form of DSF, protect the liver against toxicant-induced injury through inhibition of cytochrome P450 2E1. The effect of DSF and DDC on the levels of major hepatic microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) expression was comparatively studied, given the view that these enzymes are involved in terminal detoxification events for high energy intermediates of xenobiotics. Treatment of rats with a single dose of DSF (20-200 mg/kg, po) resulted in 2- to 15-fold increases in the mEH mRNA level at 24 hr with the ED$_{50}$ value being noted as 60 mg/kg. The mEH mRNA level was elevated ~15-fold at 24 hr after treatment at the dose of 100 mg/kg, whereas the hepatic mRNA level was rather decreased from the maximum at the dose of 200 mg/kg, indicating that DSF might cause cytotoxicity at the dose. In contrast to the effect of DSF, DDC only minimally elevated the mEH mRNA level at the doses employed. DSF moderately increased the major GST mRNA levels in the liver as a function of dose, resulting in rGSTA2, rGSTA3/5 or rGSTM1 mRNA levels being elevated 3- to 4-fold at 24 hr post-treatment, whereas the rGSTM2 mRNA level was not altered. DDC, however, failed to stimulate the mRNA levels for major GST subunits, indicating that the reduced form of DSF was ineffective in stimulating the GST the expression. The effect of other organosulfides including aldrithiol, 2, 2'-dithiobis(benzothiazole) (DTB), tetramethylthiouram disulfide (TMTD) and allyl disulfide (ADS) on the hepatic mEH and GST mRNA expression was assessed in rats in order to further confirm the increase in the gene expression by other disulfides. Treatment of rats with aldrithiol (100 mg/kg, po) resulted in a 16-fold increase in the mEH mRNA level at 24 hr post-treatment. DTB, TMTD and ADS also caused 5-, 9- and 12-fold increases in the rnRNA level, respectively, as compared to control. Thus, all of the disulfides examined were active in stimulating the mEH gene in the liver. The organosulfides significantly increased the rGSTA2, rGSTA3, rGSTA5 and rGSTM1 mRNA levels at 24 hr after administration. In particular, aldrithiol was very efficient in stimulating the rGSTA and rGSTM genes among the disulfides examined. These results provide evidence that DSF and other sulfides effectively stimulate the mEH and major GST gene expression at early times in the liver and that DDC, a reduced form of DSF, was ineffective in stimulating the expression of the genes, supporting the conclusion that reduced form(s) of organosulfur compound(s) might be less effective in inducing the mEH and GST genes through the antioxidant responsive element(s).

  • PDF

표고버섯균사체의 사염화탄소 및 알콜로 처리된 흰쥐 간기능 보호 효과 (Mycelial Culture of Lentinus edodes Alleviates Rat Liver Toxicity Induced by Carbon Tetrachloride and Ethanol)

  • 하영래;김영숙;안채린;권정민;박철우;하영권;김정옥
    • 생명과학회지
    • /
    • 제20권1호
    • /
    • pp.133-141
    • /
    • 2010
  • LED의 간 보호 기능을 연구하기 위하여 $CCl_4$ 및 ethanol로 SD rat에 간독성을 유발한 다음, LED를 처리하였다. LED의 간 기능 보호효과는 간장치료제인 Silymarin과 비교하였다. $CCl_4$로 간 독성을 유발한 경우, LED는간의 항산화효소인 SOD, catalase, GSH peroxidase 효소활성의 항진을 유도하였고, 산화물인 TBARS의 함량을 감소시켰다. 또한 간 손상의 지표인 혈장의 GOT, GPT 및 LDH의 활성을 감소시켰다. Ethanol로 간 독성을 유발한 경우 LED는 간의 SOD, catalase, GSH preoxidase 효소활성 및 GSH 함량을 항진시켰고, 총 cholesterol, triglyceride 및 TBARS의 함량을 감소시켰다. 또한 ethanol 대사에 관여하는 ADH 효소 활성을 증진시켰고, ROS 생성에 관여하는 CYP2E1 효소의 발현을 감소시킴으로써, 혈장의 GOT, GPT 및 LDH 효소활성이 감소되었다. 또한 LED는 DPPH 및 mouse liver mitochondrial system에서 항산화효과를 보였다. 이러한 결과로 미루어 볼 때 LED는 in vitro와 in vivo에서 항산화효과에 의한 간 기능 보호효과를 갖는 것으로 추정된다.