• Title/Summary/Keyword: Cytochrome P-450 enzymes

Search Result 243, Processing Time 0.023 seconds

Preventive Effects of Lycopene-Enriched Tomato Wine against Oxidative Stress in High Fat Diet-Fed Rats

  • Kim, A-Young;Jeon, Seon-Min;Jeong, Yong-Jin;Park, Yong-Bok;Jung, Un-Ju;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2011
  • This study was performed to investigate the antioxidant mechanism of tomato wine with varying lycopene content in rats fed a high fat diet (HFD). Male Sprague-Dawley rats were randomly divided into five groups (n=10 per group) and fed an HFD (35% of total energy from fat) plus ethanol (7.2% of total energy from alcohol), tomato wine with varying lycopene content (0.425 mg%, 1.140 mg% or 2.045 mg% lycopene) or an isocaloric control diet for 6 weeks. Mice fed HFD plus ethanol significantly increased erythrocyte hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) levels with increases in activities of erythrocyte antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) compared to pair-fed rats. Supplementation of tomato wine with varying lycopene content decreased ethanol-mediated increases of erythrocyte lipid peroxidation and antioxidant enzyme activities in HFD-fed rats, and tomato wine with higher lycopene appeared to be more effective. Tomato wine also dose-dependently lowered TBARS levels with decreased pro-oxidant enzyme, xanthine oxidase (XOD) activity in plasma of HFD-fed rats. In contrast to erythrocytes, the inhibitory effects of tomato wine on hepatic lipid peroxidation were linked to increased hepatic antioxidant enzymes (SOD and CAT) and alcohol metabolizing enzyme (alcohol dehydrogenase and aldehyde dehydrogenase) activities. There were no significant differences in hepatic XOD and cytochrome P450-2E1 activities among the groups. Together, our data suggest that tomato wine fortified with lycopene has the potential to protect against ethanol-induced oxidative stress via regulation of antioxidant or pro-oxidant enzymes and alcohol metabolizing enzyme activities in plasma, erythrocyte and liver.

GENETIC POLYMORPHISMS OF THE GLUTATHIONE S-TRANSFERASE AND CYP1A1 GENES IN KOREAN ORAL SQUAMOUS CELL CARCINOMA (한국인 구강 편평세포암에서 Glutathione S-transferase와 CYP1A1 유전자의 다형성)

  • Cha, In-Ho;Kwon, Jong-Jin;Park, Kwang-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.5
    • /
    • pp.364-371
    • /
    • 2002
  • Many chemical compopunds are converted into reactive electrophilic metabolites by the oxidative(Phase I) enzymes, which are mainly cytochrome P-450 enzyme(CYPs). Phase II conjugating enzymes, such as glutathione S-transferase(GST), usually act as inactivation of enzymes. Genetic polymorphisms have been found to be associated with increased susceptibility to cancer of the lung, bladder, breast and colorectal. Many of the polymorphic genes of carcinogen metabolism show considerably different type of cancer among different ethnic groups as well as individuals within the same group. The aim of this study is (1) to establish the frequencies of genetic polymorphisms of GSTM1 and CYP1A1 in Korean oral squamous cell carcinoma(SCC), (2) to associate oral SCC with the risk of these genetic polymorphisms. The genetic polymorphisms of the GSTM1 and the CYP1A1 genes among 50 Korean oral SCC were analyzed using polymerase chain reaction(PCR). The results suggest that the homozygote and the mutant type of CYP1A1 MspI polymorphisms may be associated with genetic susceptibility to oral SCC in Korean. A combination of the GSTM1 null type with the homozygote(m1/m1), and the mutant(m2/m2) type of CYP1A1 MspI polymorphisms showed a relatively high risk of oral SCC in Korean. In the smoking group, the GSTM1 wild genotype may be the high risk factor of oral SCC in Korean. These data coincide with the hypothesis which states that different susceptibility to cancer of genetic polymorphisms exist among different ethnic group and different types of human cancer.

Effect of Codonopsis lanceolata Water Extract on the Activities of Antioxidative Enzymes in Carbon Tetrachloride Treated Rats (더덕 물추출물이 사염화탄소를 투여한 흰쥐의 항산화계 효소활성도에 미치는 영향)

  • 조수열;한은경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1181-1186
    • /
    • 1997
  • This study was performed to investigate the effects of Codonopsis lanceolata extract on the activities of antioxidative enzymes in carbon tetrachloride treated rats. Male Sprague-Dawley rats were fed until they reached about 110$\pm$10g body weight. Thereafter they were divided into normal group(N), carbon tetrachloride treated group(T), carbon tetrachloride and Codonopsis lanceolata water extract treated group(TW). Normal group were fed standard diet and carbon tetrachloride treated group were fed carbon tetrachloride once a week at the level of 0.12ml/100g body weight. Carbon tetrachloride and Codonopsis lanceolata water extract treated group were fed carbon tetrachloride once a week at the level of 0.12ml/100g body weight and Codonopsis lanceolata water extract at the level of 0.1ml/100g body weight once a day. The rats were sacrificed after 6weeks of feeding period. Content of hepatic cytochrome P-450 diminished by carbon tetrachloride was significantly increased by Codonopsis lanceolata water extract. Significant decrease in hepatic xanthine oxidase activity was found in rats treated with Codonopsis lanceolata water extract. The activity of superoxide dismutase was decreased by carbon tetrachloride, but it was significantly increased by Codonopsis lanceolata water exract. The activity of glutathione peroxidase increased by carbon tetrachloride was significantly decreased by Codonopsis lanceolata water extract. The activities of catalase and glutathione S-transferase were significantly influenced by Codonopsis lanceolata water extract. Contents of glutathione and lipid peroxide were increased by carbon tetrachloride, but they were significantly diminished by Codonopsis lanceolata water extract.

  • PDF

Anti-inflammatory Effects in LPS-treated RAW 264.7 Cells and the Influences on Drug Metabolizing Enzyme Activities by the Traditional Herbal Formulas, Yongdamsagan-Tang and Paljung-san

  • Ha, Hyekyung;Jin, Seong Eun;Seo, Chang-Seob;Shin, Hyeun-kyoo
    • The Journal of Korean Medicine
    • /
    • v.42 no.4
    • /
    • pp.10-24
    • /
    • 2021
  • Objectives: Yongdamsagan-tang (YST) and Paljung-san (PJS) in traditional medicine and finasteride in modern medicine are used to treat benign prostatic hyperplasia (BPH). In recent, the use of combination herbal remedies with conventional drugs has been increasing. Therefore, we investigated the anti-inflammatory effects of these drugs to treat BPH and the influence of herbal formulas on finasteride metabolism. Methods: The inhibitory effects of the herbal formulas and finasteride on the production of inflammatory mediators and cytokines were determined in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Additionally, the influence of herbal formulas on activities of human drug metabolizing enzymes (DMEs) was assessed using human microsomal enzymes. Results: We observed that YST, PJS and finasteride inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2) and interleukin-6 (IL-6) in RAW 264.7 cells. The half maximal inhibitory concentration (IC50) of YST on PGE2 production was calculated to be below 25 ㎍/mL. YST inhibited the activity of uridine diphosphate-glucuronosyltransterase (UGT) 1A4 with an IC50 value of 49.35 ㎍/mL. The activities of cytochrome P450 (CYP) 1A2, CYP2B6, CYP2C19, CYP3A4, and UGT1A1 were inhibited by PJS (IC50 < 100 ㎍/mL, each). Although PJS and YST inhibited the activities of CYP3A4 and UGT1A4, respectively, these formulas may not influence the metabolism of finasteride because the IC50 values of herbal formulas on DMEs are too high to affect metabolism. Conclusions: Our results suggest that the combination of finasteride and YST or PJS might not influence their drug metabolism and that the drugs may have synergistic effects against BPH.

CYP1A1 Gene Polymorphisms: Modulator of Genetic Damage in Coal-Tar Workers

  • Giri, Shiv Kumar;Yadav, Anita;Kumar, Anil;Dev, Kapil;Gulati, Sachin;Gupta, Ranjan;Aggarwal, Neeraj;Gautam, Sanjeev Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3409-3416
    • /
    • 2012
  • Aim: It is well known that polycyclic aromatic hydrocarbons (PAHs) such as benzo (a) pyrene have carcinogenic properties and may cause many types of cancers in human populations. Genetic susceptibility might be due to variation in genes encoding for carcinogen metabolizing enzymes, such as cytochrome P-450 (CYP450). Our study aimed to investigate the effect of genetic polymorphisms of CYP1A1 (m1 and m2) on genetic damage in 115 coal-tar workers exposed to PAHs at their work place. Methods: Genetic polymorphisms of CYP1A1 were determined by the PCR-RFLP method. Comet and buccal micronucleus assays were used to evaluate genetic damage among 115 coal tar workers and 105 control subjects. Results: Both CYP1A1 m1 and CYP1A1 m2 heterozygous and homozygous (wt/mt+mt/mt) variants individually as well as synergistically showed significant association (P<0.05) with genetic damage as measured by tail moment (TM) and buccal micronuclei (BMN) frequencies in control and exposed subjects. Conclusion: In our study we found significant association of CYP1A1 m1 and m2 heterozygous (wt/mt)+homozygous (mt/mt) variants with genetic damage suggesting that these polymorphisms may modulate the effects of PAH exposure in occupational settings.

Analysis of Gene Expression in Larval Fat Body of Plutella Xylostella Under High Temperature (고온에서 배추좀나방 유충 지방체의 유전자 발현 변화 분석)

  • Kim, Kwang Ho;Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.324-332
    • /
    • 2018
  • BACKGROUND: Insects are ectothermic organisms in terrestrial ecosystems and play various roles such as controlling plant biomass and maintaining species diversity. Because insects are ectothermic, their physiological responses are very sensitive to environmental temperature which determines survival and distribution of insect population and that affects climate change. This study aimed to identification of genes contributing to fitness under high temperature. METHODS AND RESULTS: To identify genes contributing to fitness under high temperature, the transcriptomes of fat body in Plutella xyostella larva have been analyzed via next generation sequencing. From the fat body transcriptomes, structure-related proteins, heat shock proteins, antioxidant enzymes and detoxification proteins were identified. Genes encoding proteins such as structural proteins (cuticular proteins, chitin synthase and actin), stress-related protein (cytochrome P450), heat shock protein and antioxidant enzyme (catalase) were up-regulated at high temperature. In contrast expression of glutathione S transferase was down-regulated. CONCLUSION: Identifications of temperature-specific up- or down-regulated genes can be useful for detecting temperature adaptation and understanding physiological responses in insect pests.

Effects of Scopoletin Supplementation on Insulin Resistance and Antioxidant Defense System in Chronic Alcohol-Fed Rats (Scopoletin 보충이 만성 알코올을 급여한 흰쥐의 인슐린저항성 및 항산화방어계에 미치는 영향)

  • Lee, Hae-In;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.173-181
    • /
    • 2015
  • This study investigated the effects of scopoletin (6-methoxy-7-hydroxycoumarin) supplementation on insulin resistance and the antioxidant defense system in chronic alcohol-fed rats. Rats were fed a Lieber-Decarli liquid diet containing 5% ethanol with or without two doses of scopoletin (0.01 and 0.05 g/L) for 8 weeks. Pair-fed rats received an isocaloric carbohydrate liquid diet. Chronic alcohol did not affect fasting serum glucose levels, although it induced glucose intolerance and hyperinsulinemia compared with the pair-fed group and led to insulin resistance. Both doses of scopoletin similarly improved glucose intolerance, serum insulin level, and insulin resistance. Scopoletin supplementation significantly activated phosphatidyl inositol 3-kinase, which was inhibited by chronic alcohol. Two doses of scopoletin up-regulated hepatic mRNA expression and activity of glucokinase as well as down-regulated mRNA expression and activity of glucose-6-phosphatase compared with the alcohol control group. Both doses of scopoletin significantly reduced cytochrome P450 2E1 activity and elevated aldehyde dehydrogenase 2 activity, resulting in a lower serum acetaldehyde level compared with the alcohol control group. Chronic alcohol suppressed hepatic mRNA expression and activities of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; however, they were reversed by scopoletin supplementation, which reduced hydrogen peroxide and lipid peroxide levels in the liver. These results indicate that dietary scopoletin attenuated chronic alcohol-induced insulin resistance and activated the antioxidant defense system through regulation of hepatic gene expression in glucose and antioxidant metabolism.

Venlafaxine-Induced Acute Toxic Hepatitis (Venlafaxine에 의한 급성 독성 간염 1예)

  • Na, Kyeong-Sae;Hwang, Hee-Sung;Kim, Shin-Gyeom;Lee, So-Young-Irene;Jung, Han-Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.3
    • /
    • pp.159-162
    • /
    • 2011
  • Venlafaxine is among the most widely prescribed antidepressants. It is extensively metabolized to O-desmethylvenlafaxine via cytochrome P450 (CYP) 2D6. We report a case of acute toxic hepatitis resulting from venlafaxine in a 54-year-old woman with pain disorder. During venlafaxine treatment, laboratory tests revealed elevated liver enzymes with a maximum of 169 IU/L for aspartate transaminase (AST) and 166 IU/L for alanine transaminase (ALT). AST and ALT levels returned to normal after 6 days of discontinuation of venlafaxine. The patient was finally diagnosed with acute toxic hepatitis through liver biopsy. This case indicates the importance that clinicians should be aware of the hepatotoxicity of venlafaxine in practice.

Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism

  • Moon, Yunwon;Park, Bongju;Park, Hyunsung
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.173-178
    • /
    • 2016
  • Liver cells experience hypoxic stress when drug-metabolizing enzymes excessively consume O2 for hydroxylation. Hypoxic stress changes the transcription of several genes by activating a heterodimeric transcription factor called hypoxia-inducible factor-1α/β (HIF-1α/β). We found that hypoxic stress (0.1% O2) decreased the expression of cytochrome P450 7A1 (CYP7A1), a rate-limiting enzyme involved in bile acid biosynthesis. Chenodeoxycholic acid (CDCA), a major component of bile acids, represses CYP7A1 by activating a transcriptional repressor named small heterodimer partner (SHP). We observed that hypoxia decreased the levels of both CDCA and SHP, suggesting that hypoxia repressed CYP7A1 without inducing SHP. The finding that overexpression of HIF-1α increased the activity of the CYP7A1 promoter suggested that hypoxia decreased the expression of CYP7A1 in a HIF-1-independent manner. Thus, the results of this study suggested that hypoxia decreased the activity of CYP7A1 by limiting its substrate O2, and by decreasing the transcription of CYP7A1.

Metabolic aspects of the toxicology of mixtures of diazinon, toxaphene and/or endrin in mice (마우스에서 diazinon, toxaphene 과 endrin 단독 혹은 그 혼합물 독성의 대사)

  • Kim, Jong-shu;Kim, Gon-sup;Hah, Dae-sik
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.265-272
    • /
    • 1998
  • The effects of mixtures of diazinon(DA;5mg/kg), toxaphene(TOX;40mg/kg) and/or endrin(END; 5mg/kg) on the hepatic mixed-function oxygenase(MFO) system were stuided in ICR mice(18~22g) by oral intubation daily for 7 days. In general, TOX and TOX-containing mixtures were found to induced the metabolism of aminopyrine(22~60%), aniline(42~85%), phenacetin(145~194%) and benzo [a]pyrene(158~210%), and pentobaribtal biotransformation in the 9,000g liver supernatants and to increased the hepatic cytochrome p-450 contents(47~89%). Results of these may be, at least in part, associated with the MFO system. TOX pretreatment increased the aliesterase activity in the serum and liver homogenates and supernatants by 23~145%. The toxicity of TOX and TOX-containing mixtures would be lower than that of diazinon because of TOX-induced increase in the metabolism of diazinon(DA) or diazioxon(DO) and capability of TOX to stimulate the metabolism of diazinon and diazioxon and provide a pool of non-critical enzymes. These results suggest that this information might be helpful in the evaluation of the potential hazard due to occupational and/or environmental exposures to pesticides and their mixtures.

  • PDF