• 제목/요약/키워드: Cytochrome P-450 enzymes

검색결과 243건 처리시간 0.04초

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • 제2권2호
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.

Effect of methylsulfonylmethane on oxidative stress and CYP3A93 expression in fetal horse liver cells

  • Kim, Kyoung Hwan;Park, Jeong-Woong;Yang, Young Mok;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.312-319
    • /
    • 2021
  • Objective: Stress-induced cytotoxicity caused by xenobiotics and endogenous metabolites induces the production of reactive oxygen species and often results in damage to cellular components such as DNA, proteins, and lipids. The cytochrome P450 (CYP) family of enzymes are most abundant in hepatocytes, where they play key roles in regulating cellular stress responses. We aimed to determine the effects of the antioxidant compound, methylsulfonylmethane (MSM), on oxidative stress response, and study the cytochrome P450 family 3 subfamily A (CYP3A) gene expression in fetal horse hepatocytes. Methods: The expression of hepatocyte markers and CYP3A family genes (CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, and CYP3A97) were assessed in different organ tissues of the horse and fetal horse liver-derived cells (FHLCs) using quantitative reverse transcription polymerase chain reaction. To elucidate the antioxidant effects of MSM on FHLCs, cell viability, levels of oxidative markers, and gene expression of CYP3A were investigated in H2O2-induced oxidative stress in the presence and absence of MSM. Results: FHLCs exhibited features of liver cells and simultaneously maintained the typical genetic characteristics of normal liver tissue; however, the expression profiles of some liver markers and CYP3A genes, except that of CYP3A93, were different. The expression of CYP3A93 specifically increased after the addition of H2O2 to the culture medium. MSM treatment reduced oxidative stress as well as the expression of CYP3A93 and heme oxygenase 1, an oxidative marker in FHLCs. Conclusion: MSM could reduce oxidative stress and hepatotoxicity in FHLCs by altering CYP3A93 expression and related signaling pathways.

Heterologous Expression of the Hot Pepper ABA 8'-Hydroxylase in Escherichia coli for Phaseic Acid Production

  • Hyun Min Kim;Young Hee Joung
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.378-386
    • /
    • 2023
  • The CYP707A family genes encoding ABA 8'-hydroxylase catabolize abscisic acid (ABA), a plant stress hormone that plays an important role in stress condition, such as drought, heat, cold and salinity. Phaseic acid (PA) is a catabolic product of ABA. Recent studies have shown that PA is important for the physiological functions in plants. It is also a neuroprotective molecule that protects against ischemic brain injury in mice. To obtain enzymes for the PA production, four CaCYP707A genes (CaCYP707A1, CaCYP707A2, CaCYP707A3 and CaCYP707A4) were isolated from hot pepper. They were heterologously expressed in Escherichia coli. Among them, CaCYP707A2 showed significantly higher expression levels in both the membrane fraction and the soluble fraction. Preferred redox partners were investigated to improve the efficiency of CaCYP707A2's catalytic reaction, and NADPH-cytochrome P450 reductase (CPR) from hot pepper (CaCPR) was preferred over other redox partners (i.e., rat CPR and ferredoxin reductase/ferredoxin). The production of 8'-hydroxy ABA and PA by ABA hydroxylation activity was confirmed in CaCYP707A2 from both membrane and soluble fractions. Therefore, CaCYP707A2 is the first identified plant CYP protein that is expressed a soluble form in cytosolic fraction having stable activity. Taken together, we propose a new CYP707A protein with industrial applications for PA production without additional modifications in E. coli heterologous expression.

살충제 Carbofuran과 Phenobarbital Sodium 및 3-Methylcholanthrene이 쥐의 효소활성에 미치는 영향 (Effect of Insecticide Carbofuran and Phenobarbital Sodium and 3-Methylcholanthrene on Activity of Enzyme in Rat)

  • 임요섭;한성수
    • 농약과학회지
    • /
    • 제3권3호
    • /
    • pp.27-36
    • /
    • 1999
  • 쥐에 있어서 carbamate계 살충제 carbofuran의 독성에 미치는 phenobarbital sodium(PB) 또는 3-methylcholanthrene(3-MC)의 영향과 작용기작을 효소적 측면에서 구명할 목적으로 이들을 단독 또는 조합으로 경구투여 하여 in vivo 효소활성을 조사하였다. Acetylcholinesterase(AChE)와 butyrylcholinesterase(BuCheE)의 효소활성은 carbofuran 3.8 mg/kg을 투여하였을 때 48시간까지 $20{\sim}70%$ 범위의 저해를 보였고, carbofuran과 PB 또는 3-MC를 조합투여하였을 때 효소활성은 초기에 감소하다가 24시간 후에는 대조구와 비슷한 수준을 나타냈다. Glutathione S-transferase(GST)의 경우 carbofuran만을 투여하였을 때 초기($0.5{\sim}6$ hr)에 $15{\sim}35%$의 저해를 보였으나, carbofuran과 PB 또는 3-MC의 조합투여시 초기에는 약간 저해를 보이다가 3시간 후에는 대조군과 유사한 효소활성을 보였고, 6시간 후에는 대조군에 비해 활성이 20%이상 증가하였다. UDP-glucuronosyltransferase(UDPGI) 및 cytochrome P-450 효소계의 효소활성은 carbofuran과 PB 또는 3-MC를 조합 투여하였을 때 투여 후 6시간까지는 carbofuran만의 투여에 비해 효소활성이 $2.6{\sim}2.8$배 이상 높았다. 이상의 결과에서 PB 및 3-MC의 투여가 이들 효소활성을 유도하므로써 carbofuran의 독성으로부터 쥐를 보호한 것으로 판단된다.

  • PDF

Suicidal gene therapy with rabbit cytochrome P450 4B1/2-aminoanthracene or 4-ipomeanol system in human colon cancer cell

  • Jang, Su Jin;Kang, Joo Hyun;Moon, Byung Seok;Lee, Yong Jin;Kim, Kwang Il;Lee, Tae Sup;Choe, Jae Gol;Lim, Sang Moo
    • 대한방사성의약품학회지
    • /
    • 제1권2호
    • /
    • pp.118-122
    • /
    • 2015
  • Suicidal gene therapy is based on the transduction of tumor cells with "suicide" genes encoding for prodrug-activating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4-ipomeanol (4-IPO) or 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate.In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/2-AA or 4-IPO system were evaluated in HT-29 (human colon cancer cell). pcDNA-CYP4B1 vector was transfected into HT-29 by lipofection and stable transfectant was selected by treatment of hygromycin ($500{\mu}g/mL$) for 3 weeks. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed for confirmation of CYP4B1 expression in CYP4B1 gene transduced cell. The cytotoxic effects of CYP4B1 transduced cell were determined using dye-exclusion assay after treatment of 2-AA or 4-IPO for 96 hrs. Dye-exclusion assay showed that $IC_{50}$ of HT-29 and CYP4B1 transduced HT-29 was 0.01 mM and 0.003 mM after 4-IPO or 2-AA treatment at 96 hrs exposure, respectively. In conclusion, CYP4B1 based prodrug gene therapy probably have the potential for treatment of colorectal adenocarcinoma.

Partial Lipectomy of the Epididymal Fat Alters Expression of the Steroidogenic Enzymes in the Mouse Testis at Different Postnatal Ages

  • Yong-Seung Lee;Ki-Ho Lee
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권4호
    • /
    • pp.175-183
    • /
    • 2023
  • The epididymal fat is a type of gonadal adipose tissue, which is localized closely to the testis. Even though it has been suggested that the epididymal fat is necessary for maintenance of spermatogenesis in the testis, the influence of epididymal fat on expression of testicular steroidogenic enzymes has not been examined. In the present research, expressional changes of steroidogenic enzymes in the mouse testis after 2 weeks of the surgical partial lipectomy of epididymal fat at different postnatal ages were determined by real-time polymerase chain reaction analysis. The transcript levels of all molecules at 2 months of postnatal age were significantly increased by the lipectomy of epididymal fat. However, the lipectomy at 5 months of postnatal age resulted in decreases of expression levels of all molecules examined in the testis. Except a reduced transcript level of hydroxysteroid 17-beta dehydrogenase 3, there were no significant changes of expression levels of other steroidogenic enzymes by the lipectomy at 8 months of postnatal age. At 12 months of postnatal age, the lipectomy caused a significant increase of transcript level of steroidogenic acute regulatory protein and a significant decrease of transcript level of hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1, without any expressional change of cytochrome P450 side chain cleavage, hydroxysteroid 17-beta dehydrogenase 3, and hydroxysteroid 17-beta dehydrogenase 3 in the testis. These findings suggest that the substances derived from epididymal fat could differentially influence on expression of steroidogenic enzymes in the testis during postnatal period.

흰쥐 부정소 내의 스테로이드 호르몬 수용체, $5{\alpha}$-reductase 그리고 Aromatase 발현에 미치는 EDS의 영향 (Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Expression of Steroid Hormone Receptors, $5{\alpha}$-reductase and Aromatase in the Rat Epididymis)

  • 손혁준;이성호
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.187-193
    • /
    • 2007
  • Ethane 1,2-dimethane sulfonate(EDS)는 Leydig 세포의 선별적 사멸을 유도하는 약물로서 가역적인 테스토스테론 결핍 흰쥐를 만드는데 널리 사용된다. 부정소의 구조와 기능 유지는 크게 보아 정소에서 분비되는 테스토스테론에 의존적이지만, 테스토스테론으로부터 유도되는 dihydroxytestosterone(DHT)와 에스트로겐도 중요한 역할을 한다. 본 연구에서는 EDS 주사 후 7주까지 부정소에서의 스테로이드 호르몬 수용체, cyctochrome P450aromatase(P450arom)와 $5{\alpha}$-reductase의 유전자 발현 양상을 조사하였다. 성숙한 수컷 흰쥐($350{\sim}400\;g$)에 EDS를 1회 복강 주사하고(75 mg/kg i.p.) 주사 후 0, 1, 2, 3, 4, 5, 6, 7주가 경과한 날에 희생하였다. 표적 유전자들의 전사 활성은 반 정량적 역전사 중합효소 반응법(semi-quantitative RT-PCRs)으로 측정하였다. Estrogen receptor alpha($ER{\alpha}$) 전사 수준은 EDS 실험군에서 대조군에 비해 주사 1주후에 유의하게 상승했으나(P<0.01) 2주 후부터는 대조군과 유의적인 차이를 보이지 않았다. Estrogen receptor beta($ER{\beta}$)의 전사 수준은 주사 1주후 EDS 실험군에서 대조군에 비해 유의하게 증가했다가(P<0.05), 2주와 3주에는 감소하였고(P<0.05와 P<0.01), 4주와 6주까지는 변동폭을 보이다가 7주 후에는 대조군에 비해 증가하였다(P<0.05). Androgen receptor(AR) 전사 수준은 주사 2주 후에 유의하게 증가하다가(P<0.01) 3주 후부터는 대조군 수준으로 회복하였다. 반면, P450arom는 주사 1주 후부터 3주까지 급격하게 감소했다가(P<0.01 1주와 2주; P<0.05 3주), 4주에 대조군 수준으로 회복하였다. $5{\alpha}$-reductase type 2($5{\alpha}$-RT2)의 mRNA 수준은 4주 후 유의하게 증가했다가(P<0.01), 이후 대조군 수준으로 회복하였다. 본 연구는 EDS 주사가 성 스테로이드 호르몬 수용체들과 안드로겐 전환 효소들의 전사 활성에 가역적인 변화를 유도함을 보여준 것이다. EDS 주사 모델은 부정소의 생리 조절 기작을 이해하는데 유용할 것으로 사료된다.

  • PDF

HepaRG 세포를 이용한 Bosentan 약물의 CYP450 효소활성 측정 (Measurement of CYP450 Enzymes Activity of Bosentan in HepaRG Cell)

  • 한경문;정정아;신지순;차혜진;배영지;김현욱;김영훈;성원근;강호일
    • 약학회지
    • /
    • 제58권4호
    • /
    • pp.255-261
    • /
    • 2014
  • Poly-pharmacy has been on the rise because of aging of population and chronic disease. Most of drug metabolism happens in the liver by CYP isozymes and the metabolism by CYP450 enzymes. The Cytochrome P450 (CYP) is a superfamily of enzymes that catalyzes the oxidations of many endogenous and exogenous compounds. Primary human Hepatocytes (HH) are considered as the gold standard model for In vitro drug interaction studies. However, there are several limitations (cost, limited life span) for using HH cells. HepaRG cells are being used as a possible alternative. HepaRG cells were cultured in William E medium containing the positive control inducers (1A2: 10, 25, 50 ${\mu}M$ omeprazole, 2C9 and 2C19: 10 ${\mu}M$ rifampin, 3A4: 10, 25, 50 ${\mu}M$ rifampin) at $37^{\circ}C$, 5 % $CO_2$ in a humidified atmosphere. This study was to evaluate the induction of CYP isozymes (1A2, 2C9, 2C19 and 3A4) using LC-MS/MS. We evaluated the potential induction ability of Bosentan, as a drug of pulmonary artery hypertension, in HepaRG cells. For reference, dose of the Bosentan is determined to the basis of the $C_{max}$ (835 mg/ml) value. The enzyme activity demonstrated that CYP2C9 and 3A4 were induced up to 20 times by Bosentan. Like as In vivo, the enzyme activity of CYP2C9 and CYP3A4 is significantly induced in a dose-dependent by Bosentan.

Bosentan and Rifampin Interactions Modulate Influx Transporter and Cytochrome P450 Expression and Activities in Primary Human Hepatocytes

  • Han, Kyoung-Moon;Ahn, Sun-Young;Seo, Hyewon;Yun, Jaesuk;Cha, Hye Jin;Shin, Ji-Soon;Kim, Young-Hoon;Kim, Hyungsoo;Park, Hye-kyung;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.288-295
    • /
    • 2017
  • The incidence of polypharmacy-which can result in drug-drug interactions-has increased in recent years. Drug-metabolizing enzymes and drug transporters are important polypharmacy modulators. In this study, the effects of bosentan and rifampin on the expression and activities of organic anion-transporting peptide (OATP) and cytochrome P450 (CYP450) 2C9 and CYP3A4 were investigated in vitro. HEK293 cells and primary human hepatocytes overexpressing the target genes were treated with bosentan and various concentrations of rifampin, which decreased the uptake activities of OATP transporters in a dose-dependent manner. In primary human hepatocytes, CYP2C9 and CYP3A4 gene expression and activities decreased upon treatment with $20{\mu}M$ $bosentan+200{\mu}M$ rifampin. Rifampin also reduced gene expression of OATP1B1, OATP1B3, and OATP2B1 transporter, and inhibited bosentan influx in human hepatocytes at increasing concentrations. These results confirm rifampin- and bosentan-induced interactions between OATP transporters and CYP450.

Fragment Molecular Orbital Method: Application to Protein-Ligand Binding

  • Watanabe, Hirofumi;Tanaka, Shigenori
    • Interdisciplinary Bio Central
    • /
    • 제2권2호
    • /
    • pp.6.1-6.5
    • /
    • 2010
  • Fragment molecular orbital (FMO) method provides a novel tool for ab initio calculations of large biomolecules. This method overcomes the size limitation difficulties in conventional molecular orbital methods and has several advantages compared to classical force field approaches. While there are many features in this method, we here focus on explaining the issues related to protein-ligand binding: FMO method provides useful interaction-analysis tools such as IFIE, CAFI and FILM. FMO calculations can provide not only binding energies, which are well correlated with experimental binding affinity, but also QSAR descriptors. In addition, FMO-derived charges improve the descriptions of electrostatic properties and the correlations between docking scores and experimental binding affinities. These calculations can be performed by the ABINIT-MPX program and the calculation results can be visualized by its proper BioStation Viewer. The acceleration of FMO calculations on various computer facilities is ongoing, and we are also developing methods to deal with cytochrome P450, which belongs to the family of drug metabolic enzymes.