• 제목/요약/키워드: Cytochrome P-450 CYP2C9

검색결과 49건 처리시간 0.028초

인체 간 Microsome에서 우슬 추출물의 Cytochrome P450 약물 대사효소에 대한 억제작용 (The Inhibitory Effect of Achyranthes bidentata radix Extracts on Cytochrome P450-Catalyzed Reactions in Human Liver Microsomes)

  • 김경아;이지숙;박히준;김진우;김창주;심인섭;한승무;임사비나
    • 대한한의학회지
    • /
    • 제24권2호
    • /
    • pp.40-46
    • /
    • 2003
  • Objectives : Achyranthes bidentata radix (Usul) has been used as anti-arthritic, antiallergic, antidiuretic, and so on. Recently extracts of Achyranthes bidentata radix have shown anti-inflammatory and cancer preventive effects in vitro and in vivo. Methods : We therefore evaluated the inhibitory potential of ethanol extracts of Achyranthes bidentata radix on cytochrome P450 (CYP) isoforms-catalyzed reactions, which relate to causes of cancer and inflammation, including CYP1A2, CYP2C9, CYP2C19, CYP2E1, CYP2D6, CYP2C8, and CYP3A4, using human liver microsomal preparations. Results : The extracts showed weak or negligible inhibitory effects on CYP2C9-catalyzed (S)-warfarin 7-hydroxylation, CYP2C19-catalyzed S-mephenytoin 4-hydroxylation, and CYP2D6-catalyzed dextromethorphan O-demethylation with each IC50 over 1750 g/ml, respectively. However, it showed relatively significant inhibitory effect on CYP1A2-catalyzed phenacetin O-deethylation and CYP2E1-catalyzed chlorzoxazone 6-hydroxylation with IC50s of 970.5 g/ml and 821.4 g/ml, respectively. Conclusions : These results suggest that extracts of Achyranthes bidentata radix have inhibitory effects on CYP-catalyzed reactions, especiallyCYP1A2 and CYP2E1, in human liver microsomes. These effects appear to relate to anti-inflammatory and cancer prevention following decrease of reactive oxygen species formed by CYP, especially CYP1A2 and CYP2E1, by Achyranthes bidentata radix. However, further evaluation is necessary to demonstrate and to confirm its effects in human.

  • PDF

생강의 주성분인 6-Shogaol이 인체 약물대사효소인 Cytochrome P450에 미치는 영향 (Effects of 6-Shogaol, A Major Component of Zingiber officinale Roscoe, on Human Cytochrome P450 Enzymes in vitro)

  • 김진
    • 한국약용작물학회지
    • /
    • 제24권1호
    • /
    • pp.7-13
    • /
    • 2016
  • Background : Ginger has been extensively used in foods and traditional medicines in Asian countries. Despite its frequent consumption in daily life, the mechanism of potential interactions between ginger components-drug has not been examined. To elucidate the mechanism of governing the effects of 6-shogaol, a primary constituent of dried ginger, on human cytochrome P450 (CYP) isoenzymes an incubation studies were carried out using pooled human liver microsome (HLM). Methods and Results : CYP isoenzyme specific substrate was incubated with multiple concentrations of inhibitor, HLM and cofactors. 6-shogaol showed a potent inhibitory effect on CYP2C9, CYP1A2 and CYP2C19 with half maximal inhibitory concentration ($IC_{50}$) values of 29.20, 20.68 and $18.78{\mu}M$ respectively. To estimate the value of the inhibition constant ($K_i$) and the mode of inhibition, an incubation study with varying concentrations of each CYP isoenzyme-specific probe was performed. 6-shogaol inhibited CYP2C9 and CYP2C19 noncompetitively ($K_i=29.02$ and $19.26{\mu}M$ respectively), in contrast, the inhibition of CYP1A2 was best explained by competitive inhibition ($K_i=6.33{\mu}M$). Conclusions : These findings suggest that 6-shogaol may possess inhibitory effects on metabolic activities mediated by CYP1A2, CYP2C9 and CYP2C19 in humans.

홍삼 Ginsenoside의 Cytochrome P450 저해 활성 평가 (In vitro Assessment of Cytochrome P450 Inhibition by Red Ginseng Ginsenosides)

  • 류창선;신장현;신병찬;심재한;양현동;이성우;김봉희
    • 약학회지
    • /
    • 제59권2호
    • /
    • pp.49-54
    • /
    • 2015
  • In the present study we evaluated comparative herb-drug interaction potential of red ginseng total powder, ginsenoside Rg1, and Rb1 by inhibition of CYP isoforms including CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 using pooled human liver microsomes (HLMs). As measured by liquid chromatography-electrospray ionization tandem mass spectrometry, red ginseng total powder inhibited significantly activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and testosterone 6-beta hydroxylation by CYP3A4, but the $IC_{50}$ values were higher than $556{\mu}g/ml$. Activities of CYP2B6, CYP2C9, CYP2D6 and CYP3A4 were inhibited by ginsenoside Rb1. Also, activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and testosterone 6-beta hydroxylation by CYP3A4 were inhibited by ginsenoside Rg1. The $IC_{50}$ values of ginsenoside Rb1 and Rg1 were higher than $200{\mu}g/ml$. Based on $IC_{50}$ values against CYP isoforms, ginsenosides-drug interactions by CYP inhibition may be very low in clinical situations.

Evaluation of the inhibitory effect of Gynostemma pentaphyllum extracts on CYP450 enzyme activities using LC-MS/MS

  • Jun Sang Yu;Young Seok Ji;So Young Jo;Xiang-Lan Piao;Hye Hyun Yoo
    • Mass Spectrometry Letters
    • /
    • 제14권3호
    • /
    • pp.116-119
    • /
    • 2023
  • Gynostemma pentaphyllum (Thunb.) Makino extract, a natural product with a history of traditional use, has gained attention for its potential health benefits. This study aimed to investigate its effects on key cytochrome P450 (CYP) enzymes using LC-MS/MS. Human liver microsomes and cDNA-expressed CYP2C8, CYP2C9, CYP2C19, and CYP3A4 supersomes were employed. Enzyme activity was assessed based on the formation of CYP-specific marker metabolites. The resulting data showed that the extract exhibited inhibitory effects on CYP2C8, CYP2C9, CYP2C19, and CYP3A4. Thus, G. pentaphyllum extract may influence the pharmacokinetics of drugs metabolized by CYP2C8, CYP2C9, CYP2C19, and CYP3A4. These findings emphasize the importance of considering potential herb-drug interactions when incorporating this extract into therapeutic regimens or dietary supplements.

Effect of Red Ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers

  • Kim, Dal-Sik;Kim, Yunjeong;Jeon, Ji-Young;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.375-381
    • /
    • 2016
  • Background: We evaluated the drug interaction profile of Red Ginseng (RG) with respect to the activities of major cytochrome P450 (CYP) enzymes and the drug transporter P-glycoprotein (P-gp) in healthy Korean volunteers. Methods: This article describes an open-label, crossover study. CYP probe cocktail drugs, caffeine, losartan, dextromethorphan, omeprazole, midazolam, and fexofenadine were administered before and after RG supplementation for 2 wk. Plasma samples were collected, and tolerability was assessed. Pharmacokinetic parameters were calculated, and 90% confidence intervals (CIs) of the geometric mean ratios of the parameters were determined from logarithmically transformed data using analysis of variance after RG administration versus before RG administration. Results: Fourteen healthy male participants were evaluated, none of whom were genetically defined as poor CYP2C9, 2C19, and CYP2D6 metabolizers based on genotyping. Before and after RG administration, the geometric least-square mean metabolic ratio (90% CI) was 0.870 (0.805-0.940) for caffeine to paraxanthine (CYP1A2), 0.871 (0.800-0.947) for losartan (CYP2C9) to EXP3174, 1.027 (0.938-1.123) for omeprazole (CYP2C19) to 5-hydroxyomeprazole, 1.373 (0.864-2.180) for dextromethorphan to dextrorphan (CYP2D6), and 0.824 (0.658-1.032) for midazolam (CYP3A4) to 1-hydroxymidazolam. The geometric mean ratio of the area under the curve of the last sampling time ($AUC_{last}$) for fexofenadine (P-gp) was 0.963 (0.845-1.098). Administration of concentrated RG for 2 wk weakly inhibited CYP2C9 and CYP3A4 and weakly induced CYP2D6. However, no clinically significant drug interactions were observed between RG and CYP and P-gp probe substrates. Conclusion: RG has no relevant potential to cause CYP enzyme- or P-gp-related interactions.

감초 물 추출물 및 Glycyrrhizin이 인체 간 Microsome에서 Cytochrome P450 약물대사효소에 미치는 영향 (Inhibitory Effect of Licorice Ethanol Extracts and Glycyrrhizin on Cytochrome P450 Drug-Metabolizing Enzymes in Human Liver Microsomes)

  • 박종훈;박지영;주영승
    • 대한예방한의학회지
    • /
    • 제7권2호
    • /
    • pp.65-74
    • /
    • 2003
  • Objective : The aim of present study is to evaluate the inhibitory potential of licorice extract and glycyrrhizin on cytochrome P450(CYP) in human liver microsomes. Methods : Using human liver microsomes, water extract of licorice and glycyrrhizin as an inhibitor were co-incubated with each probe drug representing selective CYP isoform activity. We measured relative metabolic activity in incubation condition compared to that with no extract of licorice using HPLC system. Results : Both water extracts of licorice and glycyrrhizin showed inhibitory effect on CYP-catalyzed reactions. CYP2C19 $(IC_{50}=126.7{\mu}g/ml)$ is most potently inhibited by water extract than other tested CYP isoforms$(IC_{50}>450{\mu}g/ml)$, but glycyrrhizin exhibited potent inhibition on CYP1A2$(IC_{50}=106.9{\mu}g/ml)$ followed by CYP2C9 and CYP2D6. Conclusion: These results indicate that water extract of licorice and glycyrrhizin have inhibitory potential on CYP-catalyzed reaction in human liver microsomes. But the mechanism of inhibition was slightly different between them Water extract of licorice mainly inhibited CYP2C19, and glycyrrhizin primarily inhibited CYP1A2. The inhibition by water extract of licorice and glycyrrhizin on CYP isoforms may cause drug interaction with co-administered drug leading to toxicity or treatment failure.

  • PDF

A Comparison of the In Vitro Inhibitory Effects of Thelephoric Acid and SKF-525A on Human Cytochrome P450 Activity

  • Song, Min;Do, HyunHee;Kwon, Oh Kwang;Yang, Eun-Ju;Bae, Jong-Sup;Jeong, Tae Cheon;Song, Kyung-Sik;Lee, Sangkyu
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.155-160
    • /
    • 2014
  • Thelephoric acid is an antioxidant produced by the hydrolysis of polyozellin, which is isolated from Polyozellus multiplex. In the present study, the inhibitory effects of polyozellin and thelephoric acid on 9 cytochrome P450 (CYP) family members (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were examined in pooled human liver microsomes (HLMs) using a cocktail probe assay. Polyozellin exhibited weak inhibitory effects on the activities of all 9 CYPs examined, whereas thelephoric acid exhibited dose- and time-dependent inhibition of all 9 CYP isoforms ($IC_{50}$ values, $3.2-33.7{\mu}M$). Dixon plots of CYP inhibition indicated that thelephoric acid was a competitive inhibitor of CYP1A2 and CYP3A4. In contrast, thelephoric acid was a noncompetitive inhibitor of CYP2D6. Our findings indicate that thelephoric acid may be a novel, non-specific CYP inhibitor, suggesting that it could replace SKF-525A in inhibitory studies designed to investigate the effects of CYP enzymes on the metabolism of given compounds.

Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes

  • Ryu, Chang Seon;Oh, Soo Jin;Oh, Jung Min;Lee, Ji-Yoon;Lee, Sang Yoon;Chae, Jung-woo;Kwon, Kwang-il;Kim, Sang Kyum
    • Toxicological Research
    • /
    • 제32권3호
    • /
    • pp.207-213
    • /
    • 2016
  • Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an $IC_{50}$ value of 6.9, 16.8, and $43.1{\mu}g/mL$, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2.

In Vitro Inhibitory Effect of Licoricidin on Human Cytochrome P450s

  • Kim, Sunju;O, Heungchan;Kim, Jeong Ah;Lee, Seung Ho;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제5권3호
    • /
    • pp.84-88
    • /
    • 2014
  • Licoricidin isolated from Glycyrrhiza uralensis is known to have anticancer, anti-nephritic, anti-Helicobacter pylori, and antibacterial effects. In this study, a cocktail probe assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to investigate the modulating effect of licoricidin on cytochrome P450 (CYP) enzymes in human liver microsomes. When licoricidin was incubated at $0-25{\mu}m$ with CYP probes for 60 min at $37^{\circ}C$, it showed potent inhibitory effects on CYP2B6-catalyzed bupropion hydroxylation and CYP2C9-catalyzed diclofenac 4'-hydroxylation with half maximal inhibitory concentration ($IC_{50}$) values of 3.4 and $4.0{\mu}m$, respectively. The inhibition mode of licoricidin was revealed as competitive, dose-dependent, and non-time-dependent, and following the pattern of Lineweaver-Burk plots. The inhibitory effect of licoricidin has been confirmed in human recombinant cDNA-expressed CYP2B6 and 2C9 with $IC_{50}$ values of 4.5 and $0.73{\mu}m$, respectively. In conclusion, this study has shown the potent inhibitory effect of licoricidin on CYP2B6 and CYP2C9 activity could be important for predicting potential herb-drug interactions with substrates that mainly undergo CYP2B- and CYP2C9-mediated metabolism.

Effect of TSHAC on Human Cytochrome P450 Activity, and Transport Mediated by P-Glycoprotein

  • Im, Yelim;Kim, Yang-Weon;Song, Im-Sook;Joo, Jeongmin;Shin, Jung-Hoon;Wu, Zhexue;Lee, Hye Suk;Park, Ki Hun;Liu, Kwang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1659-1664
    • /
    • 2012
  • TSAHC [4'-(p-toluenesulfonylamido)-4-hydroxychalcone] is a promising antitumorigenic chalcone compound, especially against TM4SF5 (four-transmembrane L6 family member 5)-mediated hepatocarcinoma. We evaluated the potential of TSAHC to inhibit the catalytic activities of nine cytochrome P450 isoforms and of P-glycoprotein (P-gp). The abilities of TSAHC to inhibit phenacetin O-deethylation (CYP1A2), coumarin 6-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylation (CYP2C8), diclofenac 4-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation (CYP3A) were tested using human liver microsomes. The P-gp inhibitory effect of TSAHC was assessed by [$^3H$]digoxin accumulation in the LLCPK1-MDR1 cell system. TSAHC strongly inhibited CYP2C8, CYP2C9, and CYP2C19 isoform activities with $K_i$ values of 0.81, 0.076, and $3.45{\mu}M$, respectively. It also enhanced digoxin accumulation in a dose-dependent manner in the LLCPK1-MDR1 cells. These findings indicate that TSAHC has the potential to inhibit CYP2C isoforms and P-gp activities in vitro. TSAHC might be used as a nonspecific inhibitor of CYP2C isoforms based on its negligible inhibitory effect on other P450 isoforms such as CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, and CYP3A.