• 제목/요약/키워드: Cytochrome P-450 3A4

검색결과 276건 처리시간 0.035초

Effects of the Peroxisome Proliferator Ciprofibrate and Prostaglandin $F_2\alpha$ Combination Treatment on Second Messengers in Cultured Rat Hepatocytes

  • Hong, Jin-Tae;Yun, Yeo-Pyo
    • Archives of Pharmacal Research
    • /
    • 제21권2호
    • /
    • pp.120-127
    • /
    • 1998
  • Peroxisome proliferators induce hepatic peroxisome proliferation and hepatic tumors in rodents. These chemicals increase the expression of the peroxisomal $\beta$-oxidation pathway and the cytochrome P-450 4A family, which metabolizes lipids, including eicosanoids. Peroxisome proliferators transiently induce increased cell proliferation in vivo. However, peroxisome proliferators are weakly mitogenic and are not co-mitogenic with epidermal growth factor (EGF) in cultured hepatocytes. Earlier study found that the peroxisome proliferator ciprofibrate is cornitogenic with eicosanoids. In order to study possible mechanisms of the comitogenicity of peroxisome proliferator ciprofibrate and eicosanoids' we hypothesized that the co-mitogenicity may result from synergistic or additive increases of second messengers in mitogenic signal pathways. We therefore examined the effect of the peroxisome proliferator ciprofibrate, prostaglandin $F_2_{\alpha}$($PGF_2{\alpha}$) and the combination of ciprofibrate and $PGF_2{\alpha}$ with or without growth factors on the protein kinase C (PKC) activity, and inositol-1, 4, 5-triphosphate ($IP_{3-}$) and intracellular calcium ($[Ca^{2+}]_i$) concentrations in cultured rat hepatocytes. The combination of ciprofibrate and $PGF_2{\alpha}$ significantly increased particulate PKC activity. The combination of ciprofibrate and $PGF_2{\alpha}$ also significantly increased EGF, transforming growth factor-$\alpha$ ($TGF_2{\alpha}$) and hepatic growth factor (HGF)-induced particulate PKC activity. The combination of ciprofibrate and $PGF_2_\alpha$greatly increased $[Ca^{2+}]_i$. However, the increases of PKC activity and $[Ca^{2+}]_i$ by ciprofibrate and $PGF_2{\alpha}$ alone were much smaller. Neither ciprofibrate or $PGF_2{\alpha}$ alone nor the combination of ciprofibrate and $PGF_2{\alpha}$ significantly increased the formation of $IP_3$. The combination of ciprofibrate and $PGF_2{\alpha}$, however, blocked the inhibitory effect of $TGF-{\beta}$ on particulate PKC activity and formation of $IP_3$ induced by EGF. These results show that co-mitogenicity of the peroxisome proliferator ciprofibrate and eicosanoids may result from the increase in particulate PKC activity and intracellular calcium concentration but not from the formation of $IP_3$.

  • PDF

스티렌이 흰쥐의 간 조직 중 항산화계 효소 활성에 미치는 영향 (Effect of Styrene on Hepatic Activities of Antioxidant Enzymes in Rats)

  • 이종렬;김동훈;이상민
    • 한국콘텐츠학회논문지
    • /
    • 제21권4호
    • /
    • pp.678-687
    • /
    • 2021
  • 스티렌은 플라스틱과 같은 생활용품에 광범위하게 사용되며, 건강에 위해를 야기시킬 수 있다. 스티렌이 간 조직 중 항산화계 효소 활성에 미치는 영향을 확인하기 위해 50 mg/kg, 200 mg/kg 및 400 mg/kg 용량을 4일 동안 1일 2회 복강 투여하였다. 혈청 ALT 및 AST 활성 변동은 대조군에 비해 400 mg/kg 투여군에서 각각 약 1.2배 (p<0.05) 및 약 43.3% (p<0.05) 유의하게 증가하였다. 이는 투여용량이 증가할수록 간손상이 심화되었다는 것을 의미한다. MDA 함량 변동은 대조군에 비해 400 mg/kg 투여군에서 약 37.1% (p<0.05) 증가하였고, XO 활성도는 200 mg/kg 투여군에 비해 400 mg/kg 투여군에서 약 15.2% 증가하였고, CYPdAH 활성도는 약 40.4% (p<0.05) 유의하게 증가하였다. 생성된 과잉의 활성산소종을 제거하기 위한 항산화계 효소인 GPx, CAT, SOD 및 GST 활성도는 대조군에 비해 400 mg/kg 투여군에서 각각 약 33.0% (p<0.05), 약 41.2% (p<0.05), 약 47.2% (p<0.05) 및 약 27.6% (p<0.05) 유의하게 감소하였다. GSH 함량은 200 mg/kg 투여군에 비해 400 mg/kg 투여군에서 34.5% (p<0.05) 유의하게 감소하였고, 소모된 GSH 함량은 스티렌과 스티렌 중간대사산물에 의한 것으로 생각된다. 이상의 결과로 보아 스티렌의 대사과정에서 생성된 과잉의 활성산소종과 독성 중간대사산물에 의해 간 손상이 유발되었고, 이는 해독에 관여하는 항산화 효소계와 불균형과 관련이 있을 것으로 생각된다.

Assessment of Biomarkers in Acetaminophen-Induced Hepatic Toxicity by siRNA

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.438-445
    • /
    • 2009
  • We investigated global gene expression from both mouse liver and mouse hepatic cell lines treated with acetaminophen (APAP) in order to compare in vivo and in vitro profiles and to assess the feasibility of the two systems. During our analyses of gene expression profiles, we picked up several down-regulated genes, such as the cytochrome P450 family 51 (Cyp51), sulfotransferase family cytosolic 1C member 2 (Sult1c2), 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1), and several genes that were up-regulated by APAP, such as growth arrest and DNA-damage-inducible 45 alpha (Gadd45a), transformation related protein 53 inducible nuclear protein 1 (Trp53inp1) and zinc finger protein 688 (Zfp688). For validation of gene function, synthesized short interfering RNAs (siRNAs) for these genes were transfected in a mouse hepatic cell line, BNL CL.2, for investigation of cell viability and mRNA expression level. We found that siRNA transfection of these genes induced down-regulation of respective mRNA expression and decreased cell viability. siRNA transfection for Cyp51 and others induced morphological alterations, such as membrane thickening and nuclear condensation. Taken together, siRNA transfection of these six genes decreased cell viability and induced alteration in cellular morphology, along with effective inhibition of respective mRNA, suggesting that these genes could be associated with APAP-induced toxicity. Furthermore, these genes may be used in the investigation of hepatotoxicity, for better understanding of its mechanism.

DC23, a Triazolothione Resorcinol Analogue, Is Extensively Metabolized to Glucuronide Conjugates in Human Liver Microsomes

  • Shon, Jong Cheol;Joo, Jeongmin;Lee, Taeho;Kim, Nam Doo;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • 제9권1호
    • /
    • pp.24-29
    • /
    • 2018
  • DC23, a triazolothione resorcinol analogue, is known to inhibit heat shock protein 90 and pyruvate dehydrogenase kinase which are up-regulated in cancer and diabetes, respectively. This study was performed to elucidate the metabolism of DC23 in human liver microsomes (HLMs). HLMs incubated with DC23 in the presence of uridine 5'-diphosphoglucuronic acid (UDPGA) and/or ${\beta}$-nicotinamide adenine dinucleotide phosphate (NADPH) resulted in the formation of four metabolites, M1-M4. M1 was identified as DC23-N-Oxide, on the basis of LC-MS/MS analysis. DC23 was further metabolized to its glucuronide conjugates (M2, M3, and M4). In vitro metabolic stability studies conducted with DC23 in HLMs revealed significant glucuronide conjugation with a $t_{1/2}$ value of 1.3 min. The inhibitory potency of DC23 on five human cytochrome P450s was also investigated in HLMs. In these experiments, DC23 inhibited CYP2C9-mediated tolbutamide hydroxylase activity with an $IC_{50}$ value of $8.7{\mu}M$, which could have implications for drug interactions.

Susceptibility of Lung Cancer with Polymorphisms of CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 Genotypes in the Population of Inner Mongolia Region

  • Jiang, Xue-Yan;Chang, Fu-Hou;Bai, Tu-Ya;Lv, Xiao-Li;Wang, Min-Jie;Wang, Guang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5207-5214
    • /
    • 2014
  • Background: To study the relationship of susceptibility to lung cancer with the gene polymorphisms of CYP1A1, GSTM1, GSTM3, GSTT1, GSTP1 and smoking status in Han and Mongolian populations of Inner Mongolia, an autonomous region of China. Materials and Methods: PCR-RFLP, allele-specific and multiplex PCR were employed to identify the genotypes of CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 in a case-control study of 322 lung cancer patients diagnosed by bronchoscopy and 456 controls free of malignancy. Results: There is a significant difference in genotypic frequency of GSTT1 of healthy Mongolian and Han subjects. A statistically prominent association was found between CYP1A1 Msp1 (vt/vt) (OR=4.055, 95%CI:2.107-7.578, p=0.000), GSTM1 (-) (OR=2.290, 95%CI:1.467-3.573, p=0.000) and lung cancer in Mongolians. Similarly, in the Han population, CYP1A1 Msp1 (vt/vt) (OR=3.194, 95%CI:1.893-5.390, p=0.000) and GSTM1 (-) (OR=1.884, 95%CI:1.284-2.762, p=0.001) carriers also had an elevated risk of lung cancer. The smokers were more susceptible to lung cancer 2.144 fold and 1.631 fold than non-smokers in Mongolian and Han populations, respectively. The smokers who carried with CYP1A1 Msp1 (wt/vt+vt/vt), exon7 (Val/Val+Ile /Val), GSTM1 (-), GSTM3 (AB+BB), and GSTT1 (-) respectively were found all to have a high risk of lung cancer. Conclusions: CYP1A1 Msp1 (vt/vt) and GSTM1 (-) are risk factors of lung cancer in Han and Mongolian population in the Inner Mongolia region. The smokers with CYP1A1 Msp1 (wt/vt+vt/vt), CYP1A1 exon7 (Val/Val+Ile /Val), GSTM1 (-), GSTM3 (AB+BB), and GSTT1 (-) genotypes, respectively, are at elevated risk of lung cancer.

식이내 Selenium과 Vitamin E가 Alcohol을 섭취한 흰쥐의 간 지질 과산화에 관련된 효소의 활성에 미치는 영향 (The Effect of Selenium and Vitamin E on Activity of Enzyme Related to the Lipid Peroxidation in Rat with Alcohol Administration)

  • 김갑순;정승용;김석환
    • 한국식품영양과학회지
    • /
    • 제22권2호
    • /
    • pp.116-126
    • /
    • 1993
  • 본 실험은 식이내 Se와 vitamin E 수준이 알코올을 섭취한 흰쥐의 간 지질과산화에 관련된 효소의 활성에 미치는 영향을 살펴보고자 한 것이다. 이를 위해 평균체중이 58~62g인 Sprague-Dawley계의 숫쥐 72마리를 Se의 투여량 (0mg, 0.4mg, 10mg/kg diet)과 vitamin E 투여량 (0mg, 150mg/kg diet) 및 알코올 섭취 여부에 따라 12군으로 구분하여 7주간 사육 하였다. 알코올섭취는 사육 3주째부터 급수용 물에 10%로 맞추어 투여하여 제한 없이 먹게 하였다. 혈장중의 ${\gamma}$-GTP합성은 알코올 섭취군이 비섭취군 보다 높았고, Se의 과잉(HSe) 및 결핍된군(LSe)이 정상군(CSe) 보다 높았으며 알코올 섭취시 Se과 vitamin E의 결핍은 ${\gamma}$-GTP량의 상승에 더 큰 영향을 미쳤다. 혈장 GOT는 알코올섭취군이 비섭취군에 비해서 높은 경향을 나타내었다. 그리고 혈장 GPT 활성은 알코올 섭취군이 비섭취군 보다 약간 높은 경향이었고, Se이 결핍된 군에서의 알코올 섭취의 영향은 다른 군에서의 알코올섭취 영향보다 GPT의 상승에 더 큰 영향을 미쳤다. GSH-Px의 활성은 Se이 결핍된 LSe군은 HSe군과 CSe군에 비해서 유의적으로 낮았다. Cytosol fraction의 GSH-Px 활성은 알코올 섭취군에서 약간 낮은 값이었고 Se이 과잉 및 결핍된 HSe군과 LSe군은 CSe군에 비해서 약 2배정도 낮은 값을 나타내었다. HSe군의 혈장내 Se과 cytosol fraction GSH-Px의 상관관계는 negative 상관관계를 보였고 (r=-0.662, p< 0.001) L-군은 positive 상관관계를 보였다(r=0.640, p<0.001). Microtome fraction에서 GSH S-transferase의 활성은 알코올 섭취군에서 약간 높은 경향이었고, LSe군이 다른군에 비해서 유의적으로 높았으며, cytosol fraction에서도 LSe, CSe, HSe군 순서로 높았고, vitamin E 비섭취군은 섭취군 보다 높은 경향을 나타내었고, 알코올 섭취시 Se과 vitamin E결핍은 GSH S-transferase를 더욱 증가시켰다. Mitochondria의 catalase 활성은 HSe군은 CSe군 보다 낮은 경향이었으나 Se을 결핍시킨 LSe군은 오히려 높은 경향을 나타내었다. 간 cytosol fraction의 SOD는 각 군간에 큰 변화가 없었고 cytochrome P-450은 알코올 섭취군이 높았으며 Se을 과잉으로 섭취한 HSe군에서 유의적으로 낮았다. 결론적으로 Se 와 vitamin E의 결핍은 지질과산화에 관련된 효소의 활성을 높혀 간 지질 과산화를 촉진하고 더우기 알코올의 섭취시에는 그 영향이 더욱 두드러진 것으로 보인다.

  • PDF

CRISPR/Cas9-mediated knockout of the Vanin-1 gene in the Leghorn Male Hepatoma cell line and its effects on lipid metabolism

  • Lu Xu;Zhongliang Wang;Shihao Liu;Zhiheng Wei;Jianfeng Yu;Jun Li;Jie Li;Wen Yao;Zhiliang Gu
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.437-450
    • /
    • 2024
  • Objective: Vanin-1 (VNN1) is a pantetheinase that catalyses the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies have shown that the VNN1 is specifically expressed in chicken liver which negatively regulated by microRNA-122. However, the functions of the VNN1 in lipid metabolism in chicken liver haven't been elucidated. Methods: First, we detected the VNN1 mRNA expression in 4-week chickens which were fasted 24 hours. Next, knocked out VNN1 via CRISPR/Cas9 system in the chicken Leghorn Male Hepatoma cell line. Detected the lipid deposition via oil red staining and analysis the content of triglycerides (TG), low-density lipoprotein-C (LDL-C), and high-density lipoprotein-C (HDL-C) after VNN1 knockout in Leghorn Male Hepatoma cell line. Then we captured various differentially expressed genes (DEGs) between VNN1-modified LMH cells and original LMH cells by RNA-seq. Results: Firstly, fasting-induced expression of VNN1. Meanwhile, we successfully used the CRISPR/Cas9 system to achieve targeted mutations of the VNN1 in the chicken LMH cell line. Moreover, the expression level of VNN1 mRNA in LMH-KO-VNN1 cells decreased compared with that in the wild-type LMH cells (p<0.0001). Compared with control, lipid deposition was decreased after knockout VNN1 via oil red staining, meanwhile, the contents of TG and LDL-C were significantly reduced, and the content of HDL-C was increased in LMH-KO-VNN1 cells. Transcriptome sequencing showed that there were 1,335 DEGs between LMH-KO-VNN1 cells and original LMH cells. Of these DEGs, 431 were upregulated, and 904 were downregulated. Gene ontology analyses of all DEGs showed that the lipid metabolism-related pathways, such as fatty acid biosynthesis and long-chain fatty acid biosynthesis, were enriched. KEGG pathway analyses showed that "lipid metabolism pathway", "energy metabolism", and "carbohydrate metabolism" were enriched. A total of 76 DEGs were involved in these pathways, of which 29 genes were upregulated (such as cytochrome P450 family 7 subfamily A member 1, ELOVL fatty acid elongase 2, and apolipoprotein A4) and 47 genes were downregulated (such as phosphoenolpyruvate carboxykinase 1) by VNN1 knockout in the LMH cells. Conclusion: These results suggest that VNN1 plays an important role in coordinating lipid metabolism in the chicken liver.

Phenotyping of Flavin-Containing Monooxygenase (FMO) Activity and Factors Affecting FMO Activity in Korean

  • Jeon, Sun-Ho;Park, Chang-Shin;Cha, Young-Nam;Chung, Woon-Gye
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.127-133
    • /
    • 2001
  • Together with cytochrome P450 (CYP), flavin-containing monooxygenase (FMO) present in liver microsomes oxidizes various endogenous and exogenous chemicals. In an effort to determine the human FMO activity, we have developed two non-invasive urine analysis methods using caffeine (CA) and ranitidine (RA) as the probe compounds. As the production of theobromine (TB) and ranitidine N-oxide (RANO) from CA and RA is catalyzed primarily by the hepatic FMO, we have assigned the urinary molar ratios of TB/CA and RA/RANO as the in vivo FMO activity. In 200 age-matched Korean volunteers, the obtained TB/CA ratio ranged from 0.4 to 15.2 (38-fold difference) and the RA/RANO ratio from 5.7 to 27.2 (4.8-fold). The FMO activity of 20's, determined by caffeine metabolism, was the highest (2.5$\pm$l.9) and those of 30's, 40's, 50's, 60's and 70's were 40%, 50%, 24%, 39% and 36% of the 20's, respectively. Intake of grapefruit juice, known to contain flavonoids, inhibited the in vivo FMO (TB/CA) activity by 79%. Addition of the flavonoids like naringin, quercitrin and kaempferol, present in grapefruit juice, to the in vitro microso-mal FMO assay, thiobenzamide S-oxidation, produced 75%, 70% and 60% inhibition, respectively. Obtained Ki values of quercitrin, kaempferol and naringin on the in vitro FMO activity were 6.2, 12.0 and 13.9 $\mu\textrm{M}$, respectively. This suggested that the dose of drug should need to be adjusted to suit the individual FMO activities when the drugs metabolized by FMO are given to patients. As the intake of grapefruit juice has been identified to inhibit the FMO as well as CYP3A4 and lA2 activities, patients taking drugs metabolized by these enzymes should not drink grapefruit juice as the carrier.

  • PDF

만성 정신분열증 환자에서 Paroxetine과 Haloperidol 병합투여시 정신병리증상과 Haloperidol, Reduced Haloperidol 혈중농도의 변화 (Co-administration of Paroxetine and Haloperidol : Changes of Symptoms and Blood Level of Haloperidol, Reduced Haloperidol)

  • 한창수;이민수;김표한
    • 생물정신의학
    • /
    • 제3권2호
    • /
    • pp.251-257
    • /
    • 1996
  • Selective serotonin reuptake inhibitors(SSRIs), as haloperidol, ore metabolized in the cytochrome P450IID6. They can cause inhibition of metabolism of antipsychotics to elevate the serum level of antipsychotics and exacerbate the extrapyramidal symptoms when co-administered with antipsychotics. Among these SSRIs, there ore a few studies about paroxetine compared to fluoxetine or sertraline. In this study, we have intended to know the drug interaction of paroxetine and haloperidol when co-administered two drugs for the chronic schizophrenics by assessing the changes of positive, negative symptoms and extrapyramidal symptoms. for this purpose, we selected 29 subjects, the chronic schizophrenics with no physical problems. They were under maintenance therapy of haloperidol. They ore randomly assigned to placebo group(n=12) and drug group(n=17) by using double blind method. And then, placebo or paroxetine 20mg were administered to the subjects of each groups during 8 week period. We have assessed their psychopathology and extrapyramidal symptoms using Positive and Negative Syndrome Scale(PANSS), Hamilton Rating Scale lor Depression(HRSD), Simpson-Angus Scale at 0, 2, 4, 6, 8 weeks and serum haloperidol, reduced haloperidol levels at 0, 4, 8 weeks during the period. The results ore analysed by using repeated measure MANOVA. 27 subjects have completed the study during 8 weeks. among the subjects, 1) PANSS, HRSD ; no significant difference between groups. 2) Simpson-Angus Scale ; no significant change according to the time and no significant difference between the groups(no group and time effect). 3) Haloperidol and reduced haloperidol level ; no significant change. When co-administered paroxetine and haloperidol, there ore no significant changes of the psychopothology and no significant changes of the extrapyramidal symptoms. In this result, paroxetine seems to be not to affect the metabolism of haloperidol.

  • PDF

Heterologous Expression of Rhizopus Oryzae CYP509C12 Gene in Rhizopus Nigricans Enhances Reactive Oxygen Species Production and 11α-Hydroxylation Rate of 16α, 17-Epoxyprogesterone

  • Shen, Chaohui;Gao, Xiyang;Li, Tao;Zhang, Jun;Gao, Yuqian;Qiu, Liyou;Zhang, Guang
    • Mycobiology
    • /
    • 제47권3호
    • /
    • pp.301-307
    • /
    • 2019
  • The $11{\alpha}$-hydroxylation of $16{\alpha}$, 17-epoxyprogesterone (EP) catalyzed by Rhizopus nigricans is crucial for the steroid industry. However, lower conversion rate of the biohydroxylation restricts its potential industrial application. The $11{\alpha}$-steroid hydroxylase CYP509C12 from R. oryzae were reported to play a crucial role in the $11{\alpha}$-hydroxylation in recombinant fission yeast. In the present study, the CYP509C12 of R. oryzae (RoCYP) was introduced into R. nigricans using the liposome-mediated mycelial transformation. Heterologous expression of RoCYP resulted in increased fungal growth and improved intracellular reactive oxygen species content in R. nigricans. The $H_2O_2$ levels in RoCYP transformants were approximately 2-folder that of the R. nigricans wild type (RnWT) strain, with the superoxide dismutase activities increased approximately 45% and catalase activities decreased approximately 68%. Furthermore, the $11{\alpha}$-hydroxylation rates of EP in RoCYP transformants (C4, C6 and C9) were 39.7%, 38.3% and 38.7%, which were 12.1%, 8.2% and 9.4% higher than the rate of the RnWT strain, respectively. This paper investigated the effect of heterologous expression of RoCYP in R. nigricans, providing an effective genetic method to construct the engineered strains for steroid industry.