• 제목/요약/키워드: Cytochrome P-450 3A4

검색결과 276건 처리시간 0.033초

Inhibitory Effects of 12 Ginsenosides on the Activities of Seven Cytochromes P450 in Human Liver Microsomes

  • Jo, Jung Jae;Shrestha, Riya;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제7권4호
    • /
    • pp.106-110
    • /
    • 2016
  • Ginseng, a traditional herbal drug, has been used in Eastern Asia for more than 2000 years. Various ginsenosides, which are the major bioactive components of ginseng products, have been shown to exert numerous beneficial effects on the human body when co-administered with drugs. However, this may give rise to ginsenoside-drug interactions, which is an important research consideration. In this study, acassette assay was performed the inhibitory effects of 12 ginsenosides on seven cytochrome P450 (CYP) isoforms in human liver microsomes (HLMs) using LC-MS/MS to predict the herb-drug interaction. After incubation of the 12 ginsenosides with seven cocktail CYP probes, the generated specific metabolites were quantified by LC-MS/MS to determine their activities. Ginsenoside Rb1 and F2 showed strong selective inhibitory effect on CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP2B6-catalyzed bupropion hydroxylation, respectively. Ginsenosides Rd showed weak inhibitory effect on the activities of CYP2B6, 2C9, 2C19, 2D6, 3A4, and compound K, while ginsenoside Rg3 showed weak inhibitory effects on CYP2B6. Other ginsenosides, Rc, Rf, Rg1, Rh1, Rf, and Re did not show significant inhibitory effects on the activities of the seven CYPs in HLM. Owing to the poor absorption of ginsenosides after oral administration in vivo, ginsenosides may not have significant side effects caused by interaction with other drugs.

약물유전체학과 정신분열병 (Pharmacogenomics and Schizophrenia)

  • 이규영;정인원
    • 생물정신의학
    • /
    • 제8권2호
    • /
    • pp.208-219
    • /
    • 2001
  • The pharmacotherapy of schizophrenia exhibits wide inter-individual variabilities in clinical efficacy and adverse effects. Recently, human genetic diversity has been known as one of the essential factors to the variation in human drug response. This suggests that drug therapy should be tailored to the genetic characteristics of the individual. Pharmacogenetics is the field of investigation that attempts to elucidate genetic basis of an individual's responses to pharmacotherapy, considering drug effects divided into two categories as pharmacokinetics and pharmacodynamics. The emerging field of pharmacogenomics, which focuses on genetic determinants of drug response at the level of the entire human genome, is important for development and prescription of safer and more effective individually tailored drugs and will aid in understanding how genetics influence drug response. In schizophrenia, pharmacogenetic studies have shown the role of genetic variants of the cytochrome P450 enzymes such as CYP2D6, CYP2C19, and CYP2A1 in the metabolism of antipsychotic drugs. At the level of drug targets, variants of the dopamine $D_2$, $D_3$ and $D_4$, and 5-$HT_{2A}$ and 5-$HT_{2C}$ receptors have been examined. The pharmacogenetic studies in schizophrenia presently shows controversial findings which may be related to the multiple involvement of genes with relatively small effects and to the lack of standardized phenotypes. For further development in the pharmacogenomics of schizophrenia, there would be required the extensive outcome measures and definitions, and the powerful new tools of genomics, proteomics and so on.

  • PDF

흰쥐 부정소 내의 스테로이드 호르몬 수용체, $5{\alpha}$-reductase 그리고 Aromatase 발현에 미치는 EDS의 영향 (Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Expression of Steroid Hormone Receptors, $5{\alpha}$-reductase and Aromatase in the Rat Epididymis)

  • 손혁준;이성호
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.187-193
    • /
    • 2007
  • Ethane 1,2-dimethane sulfonate(EDS)는 Leydig 세포의 선별적 사멸을 유도하는 약물로서 가역적인 테스토스테론 결핍 흰쥐를 만드는데 널리 사용된다. 부정소의 구조와 기능 유지는 크게 보아 정소에서 분비되는 테스토스테론에 의존적이지만, 테스토스테론으로부터 유도되는 dihydroxytestosterone(DHT)와 에스트로겐도 중요한 역할을 한다. 본 연구에서는 EDS 주사 후 7주까지 부정소에서의 스테로이드 호르몬 수용체, cyctochrome P450aromatase(P450arom)와 $5{\alpha}$-reductase의 유전자 발현 양상을 조사하였다. 성숙한 수컷 흰쥐($350{\sim}400\;g$)에 EDS를 1회 복강 주사하고(75 mg/kg i.p.) 주사 후 0, 1, 2, 3, 4, 5, 6, 7주가 경과한 날에 희생하였다. 표적 유전자들의 전사 활성은 반 정량적 역전사 중합효소 반응법(semi-quantitative RT-PCRs)으로 측정하였다. Estrogen receptor alpha($ER{\alpha}$) 전사 수준은 EDS 실험군에서 대조군에 비해 주사 1주후에 유의하게 상승했으나(P<0.01) 2주 후부터는 대조군과 유의적인 차이를 보이지 않았다. Estrogen receptor beta($ER{\beta}$)의 전사 수준은 주사 1주후 EDS 실험군에서 대조군에 비해 유의하게 증가했다가(P<0.05), 2주와 3주에는 감소하였고(P<0.05와 P<0.01), 4주와 6주까지는 변동폭을 보이다가 7주 후에는 대조군에 비해 증가하였다(P<0.05). Androgen receptor(AR) 전사 수준은 주사 2주 후에 유의하게 증가하다가(P<0.01) 3주 후부터는 대조군 수준으로 회복하였다. 반면, P450arom는 주사 1주 후부터 3주까지 급격하게 감소했다가(P<0.01 1주와 2주; P<0.05 3주), 4주에 대조군 수준으로 회복하였다. $5{\alpha}$-reductase type 2($5{\alpha}$-RT2)의 mRNA 수준은 4주 후 유의하게 증가했다가(P<0.01), 이후 대조군 수준으로 회복하였다. 본 연구는 EDS 주사가 성 스테로이드 호르몬 수용체들과 안드로겐 전환 효소들의 전사 활성에 가역적인 변화를 유도함을 보여준 것이다. EDS 주사 모델은 부정소의 생리 조절 기작을 이해하는데 유용할 것으로 사료된다.

  • PDF

Detoxification of Aflatoxin B1 Contaminated Maize Using Human CYP3A4

  • Yamada, Marie;Hatsuta, Koji;Niikawa, Mayuko;Imaishi, Hiromasa
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1207-1213
    • /
    • 2020
  • Aflatoxin B1 (AFB1) is a mycotoxin produced by Aspergillus flavus (A. flavus). AFB1 is reported to have high thermal stability and is not decomposed by heat treatment during food processing. Therefore, in this study, knowing that AFB1 is metabolized by cytochrome P450 (CYP), our aim was to develop a method to detoxify A. flavus-contaminated maize, under normal temperature and pressure, using Escherichia coli expressing human CYP3A4. First, the metabolic activity of AFB1 by recombinant human CYP3A4 was evaluated. As a result, we confirmed that recombinant human CYP3A4 metabolizes 98% of AFB1. Next, we found that aflatoxin Q1, a metabolite of AFB1 was no longer mutagenic. Furthermore, we revealed that about 50% of the AFB1 metabolic activity can be maintained for 3 months when E. coli expressing human CYP3A4 is freeze-dried in the presence of trehalose. Finally, we found that 80% of AFB1 in A. flavus-contaminated maize was metabolized by E. coli expressing human CYP3A4 in the presence of surfactant triton X-405 at a final concentration of 10% (v/v). From these results, we conclude that AFB1 in A. flavus-contaminated maize can be detoxified under normal temperature and pressure by using E. coli expressing human CYP3A4.

In Vitro Metabolism of a New Neuroprotective Agent, KR-31543 in the Human Liver Microsomes : Identification of Human Cytochrome P450

  • Ji, Hye-Young;Lee, Seung-Seok;Yoo, Sung-Eun;Kim, Hosoon;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • 제27권2호
    • /
    • pp.239-245
    • /
    • 2004
  • KR-31543, (2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2 -methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran, is a new neuroprotective agent for preventing ischemia-reperfusion damage. This study was performed to identify the metabolic pathway of KR-31543 in human liver microsomes and to characterize cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-31543. Human liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of two metabolites, M1 and M2. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC/MS/MS analysis with a synthesized authentic standard, and M2 was suggested to be hydroxy-KR-31543. Correlation analysis between the known CYP enzyme activities and the rates of the formation of M 1 and M2 in the 12 human liver microsomes have showed significant correlations with testosterone 6$\beta$-hydroxylase activity (a marker of CYP3A4). Ketoconazole, a selective inhibitor of CYP3A4, and anti-CYP3A4 monoclonal antibodies potently inhibited both N-hydrolysis and hydroxylation of KR-31543 in human liver microsomes. These results provide evidence that CYP3A4 is the major isozyme responsible for the metabolism of KR-31543 to M1 and M2.

암브록솔과 세티리진의 Cytochrome P450 저해 활성 평가 (In Vitro Assessment of Cytochrome P450 Inhibition by Ambroxol and Cetirizine)

  • 김봉희;류창선;장힘찬;이상윤;이지윤;채정우;권광일;김상겸
    • 약학회지
    • /
    • 제57권3호
    • /
    • pp.194-198
    • /
    • 2013
  • In the present study we evaluated drug-drug interaction potential of ambroxol and cetirizine mediated by inhibition of CYP isoforms including CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 using pooled human liver microsomes (HLMs). As measured by liquid chromatography-electrospray ionization tandem mass spectrometry, cetirizine and ambroxol inhibited significantly CYP2E1 but the maximal inhibition was approximately 36% at 10 ${\mu}M$ cetirizine and 28% at 3 ${\mu}M$ ambroxol. In addition, CYP2D6 activity was decreased to approximately 83% of control activity in pooled HLM incubated with 3 ${\mu}M$ ambroxol. Activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 were not significantly inhibited by cetirizine and ambroxol. Considering their maximal plasma concentration in human ($C_{max}$ of cetirizine is approximately 0.67 ${\mu}M$ and $C_{max}$ of ambroxol is 0.044 ${\mu}M$), these two drugs have very low possibility in drug-drug interaction by CYP inhibition in clinical situations.

Pentachlorophenol 대사물과 세포내 거대분자물의 반응에 관한 연구 (Covalent Interactions of Reactive Pentachlorophenol Metabolites with Cellular Macromolecules)

  • 정요찬;윤병수;이영순;조명행
    • Toxicological Research
    • /
    • 제13권3호
    • /
    • pp.257-263
    • /
    • 1997
  • Pentachlorophenol(PCP) which ks widely used in wood preservation, pulp and paper mills, has led to a substantial envirortmental contamination. To get the reliable data for the effective health risk assessment with PCP, covalent binding potential of PCP to cellular macromolecules and glutathione(GSH) was investigated after intraperitoneal administration of $^{14}C-PCP$ to rats. PCP metabolites were able to bind covalently to serum albumin and hepatic protein in a dose- and time-dependent manner. Hepatic protein adducts of PCP metabolites were increased as a function of cytochrome P-450 activities, whereas, albumin adducts significantly decreased. Covalent binding of PCP metabolites with DNA or hemoglobin was not observed. GSH levels in liver tissue decreased over 12hrs, however, the level was recovered after 48hrs. Tetrachloro-1,4-benzoquinone (1,4-TCBQ), one of the most reactive PCP metabolites, conjugated with GSH very rapidly. Base on our results, we could conclude that PCP metabolized to reactive electrophilic metabolites by cytochrome P-450 isoenzymes and conjugated rapidly with neighboring protein or nonprotein sulfhydryl before reacting with DNA or hemoglobin. We propose that albumin adducts and mercapturic acids of PCP metabolites can be used good biomarker of recent PCP exposure.

  • PDF

건강한 한국인에서 미다졸람 집단약동학 분석: CYP3A 매개 약물상호작용 평가 (Population Pharmacokinetics of Midazolam in Healthy Koreans: Effect of Cytochrome P450 3A-mediated Drug-drug Interaction)

  • 신광희
    • 한국임상약학회지
    • /
    • 제26권4호
    • /
    • pp.312-317
    • /
    • 2016
  • Objective: Midazolam is mainly metabolized by cytochrome P450 (CYP) 3A. Inhibition or induction of CYP3A can affect the pharmacological activity of midazolam. The aims of this study were to develop a population pharmacokinetic (PK) model and evaluate the effect of CYP3A-mediated interactions among ketoconazole, rifampicin, and midazolam. Methods: Three-treatment, three-period, crossover study was conducted in 24 healthy male subjects. Each subject received 1 mg midazolam (control), 1 mg midazolam after pretreatment with 400 mg ketoconazole once daily for 4 days (CYP3A inhibition phase), and 2.5 mg midazolam after pretreatment with 600 mg rifampicin once daily for 10 days (CYP3A induction phase). The population PK analysis was performed using a nonlinear mixed effect model ($NONMEM^{(R)}$ 7.2) based on plasma midazolam concentrations. The PK model was developed, and the first-order conditional estimation with interaction was applied for the model run. A three-compartment model with first-order elimination described the PK. The influence of ketoconazole and rifampicin, CYP3A5 genotype, and demographic characteristics on PK parameters was examined. Goodness-of-fit (GOF) diagnostics and visual predictive checks, as well as bootstrap were used to evaluate the adequacy of the model fit and predictions. Results: Twenty-four subjects contributed to 900 midazolam concentrations. The final parameter estimates (% relative standard error, RSE) were as follows; clearance (CL), 31.8 L/h (6.0%); inter-compartmental clearance (Q) 2, 36.4 L/h (9.7%); Q3, 7.37 L/h (12.0%), volume of distribution (V) 1, 70.7 L (3.6%), V2, 32.9 L (8.8%); and V3, 44.4 L (6.7%). The midazolam CL decreased and increased to 32.5 and 199.9% in the inhibition and induction phases, respectively, compared to that in control phase. Conclusion: A PK model for midazolam co-treatment with ketoconazole and rifampicin was developed using data of healthy volunteers, and the subject's CYP3A status influenced the midazolam PK parameters. Therefore, a population PK model with enzyme-mediated drug interactions may be useful for quantitatively predicting PK alterations.

Assessment of Hepatic Cytochrome P450 3A Activity Using Metabolic Markers in Patients with Renal Impairment

  • Kim, Andrew HyoungJin;Yoon, Sumin;Lee, Yujin;Lee, Jieon;Bae, Eunjin;Lee, Hajeong;Kim, Dong Ki;Lee, SeungHwan;Yu, Kyung-sang;Jang, In-Jin;Cho, Joo-Youn
    • Journal of Korean Medical Science
    • /
    • 제33권53호
    • /
    • pp.298.1-298.10
    • /
    • 2018
  • Background: The renal function of individuals is one of the reasons for the variations in therapeutic response to various drugs. Patients with renal impairment are often exposed to drug toxicity, even with drugs that are usually eliminated by hepatic metabolism. Previous study has reported an increased plasma concentration of indoxyl sulfate and decreased plasma concentration of $4{\beta}$-hydroxy (OH)-cholesterol in stable kidney transplant recipients, implicating indoxyl sulfate as a cytochrome P450 (CYP) inhibiting factor. In this study, we aimed to evaluate the impact of renal impairment severity-dependent accumulation of indoxyl sulfate on hepatic CYP3A activity using metabolic markers. Methods: Sixty-six subjects were enrolled in this study; based on estimated glomerular filtration rate (eGFR), they were classified as having mild, moderate, or severe renal impairment. The plasma concentration of indoxyl sulfate was quantified using liquid chromatography-mass spectrometry (LC-MS). Urinary and plasma markers ($6{\beta}$-OH-cortisol/cortisol, $6{\beta}$-OH-cortisone/cortisone, $4{\beta}$-OH-cholesterol) for hepatic CYP3A activity were quantified using gas chromatography-mass spectrometry (GC-MS). The total plasma concentration of cholesterol was measured using the enzymatic colorimetric assay to calculate the $4{\beta}$-OH-cholesterol/cholesterol ratio. The correlation between variables was assessed using Pearson's correlation test. Results: There was a significant negative correlation between MDRD eGFR and indoxyl sulfate levels. The levels of urinary $6{\beta}$-OH-cortisol/cortisol and $6{\beta}$-OH-cortisone/cortisone as well as plasma $4{\beta}$-OH-cholesterol and $4{\beta}$-OH-cholesterol/cholesterol were not correlated with MDRD eGFR and the plasma concentration of indoxyl sulfate. Conclusion: Hepatic CYP3A activity may not be affected by renal impairment-induced accumulation of plasma indoxyl sulfate.

Streptozotocin 유발 당뇨쥐의 신장 및 뇌조직에서의 Microsomal Mixed Function Oxidase System에 미치는 녹차 Catechin의 영향 (Effect of Green Tea Catechin on the Microsomal Mixed Function Oxidase System of Kidney and Brain in Streptozotocin-Induced Diabetic Rats)

  • 이순재;신주영;차복경
    • 한국식품영양과학회지
    • /
    • 제27권2호
    • /
    • pp.319-325
    • /
    • 1998
  • The purpose of this study was to investigate the effect of green tea catechin on microsomal mixed function oxidase(MFO) system of kidney and brain in streptozotocin(STZ) induced diabetic rats. Sprague-Dawley male rats weighing 140$\pm$10g were randomly assigned to one control and three STZ-diabetic groups. Diabetic groups wer classified to DM-0C(catechin 0%/kg diet), DM-0.5C (catechin 0.5%/kg diet), and DM-1.0C(catechin 1%/kg diet) according to the level of catechin supplementation. Diabetes were experimentally induced by intravenous administration of 55mg/kg body weight of STZ in citrate buffer(pH 4.3) after 4 weeks feeding of three experimental diets. Animals were sacrificed at the sixth day of diabetic state. The contents of cytochrome P450 in kidney were increased by 77, 42, 49% in DM-0C, DM-0.5C and DM-1.0C groups, respectively, than normal group. The contents of cytochrome P450 in brain were increased by 43% in DM-0C group than normal group, but those of DM-0.5C and DM-1.0C groups were similar to that of normal group. The contents of cytochrome b5 in kidney were increased by 78, 38, 49% in DM-0C, DM-0.5C and DM-1.0C groups, respectively, than normal group. Meanwhile, the contents of cytochrome b5 in brain were not significantly different among all groups. The activities of NADPH-cytochrome P450 reductase in kidney of DM-group were increased by 27% than normal group, but those of DM-0.5C and DM-1.0C groups were 13 and 15% lower than that of DM-0C group. The activities in brain were also increased by 31% in DM-0C group, but those of DM-0.5C and DM-1.0C groups were similar to than of normal group. Levels of TBARS (thiobarbituric acid reactive substance) in kidney were increased by 147, 60 and 59% in DM-0C, DM-0.5C, and DM-1.0C groups, respectively, compared with normal group, but those of DM-0.5C and DM-1.0C groups were 36, 35% lower than that of DM-0C group. Meanwhile, the levels of TBARS in brain were not significantly different among four groups. These results indicate that dietary catechins in green tea play a powerful antioxidant role in reducing the lipid peroxidation enhanced by activation of MFO system in STZ-induced diabetes.

  • PDF