• Title/Summary/Keyword: Cytochrome P-450 2A6

Search Result 195, Processing Time 0.03 seconds

The Role of CYP2B6*6 Gene Polymorphisms in 3,5,6-Trichloro-2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers

  • Liem, Jen Fuk;Suryandari, Dwi A.;Malik, Safarina G.;Mansyur, Muchtaruddin;Soemarko, Dewi S.;Kekalih, Aria;Subekti, Imam;Suyatna, Franciscus D.;Pangaribuan, Bertha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • Objectives: One of the most widely used pesticides today is chlorpyrifos (CPF). Cytochrome P450 (CYP)2B6, the most prominent catalyst in CPF bioactivation, is highly polymorphic. The objective of our study was to evaluate the role of CYP2B6*6, which contains both 516G>T and 785A>G polymorphisms, in CPF toxicity, as represented by the concentration of 3,5,6-trichloro-2-pyridinol (TCPy), among vegetable farmers in Central Java, Indonesia, where CPF has been commonly used. Methods: A cross-sectional study was conducted among 132 vegetable farmers. Individual socio-demographic and occupational characteristics, as determinants of TCPy levels, were obtained using a structured interviewer-administered questionnaire and subsequently used to estimate the cumulative exposure level (CEL). TCPy levels were detected with liquid chromatography-mass spectrometry. CYP2B6*6 gene polymorphisms were analyzed using a TaqMan® SNP Genotyping Assay and Sanger sequencing. Linear regression analysis was performed to analyze the association between TCPy, as a biomarker of CPF exposure, and its determinants. Results: The prevalence of CYP2B6*6 polymorphisms was 31% for *1/*1, 51% for *1/*6, and 18% for *6/*6. TCPy concentrations were higher among participants with CYP2B6*1/*1 than among those with *1/*6 or *6/*6 genotypes. CYP2B6*6 gene polymorphisms, smoking, CEL, body mass index, and spraying time were retained in the final linear regression model as determinants of TCPy. Conclusions: The results suggest that CYP2B6*6 gene polymorphisms may play an important role in influencing susceptibility to CPF exposure. CYP2B6*6 gene polymorphisms together with CEL, smoking habits, body mass index, and spraying time were the determinants of urinary TCPy concentrations, as a biomarker of CPF toxicity.

Effect of Carbaryl on the Toxicity of Fenvalerate in Rats (Fenvalerate의 독성에 미치는 Carbaryl의 영향)

  • 이상기;홍사욱
    • Environmental Analysis Health and Toxicology
    • /
    • v.6 no.3_4
    • /
    • pp.105-121
    • /
    • 1991
  • The object of this study is to investigate the toxicity of fenvalerate [(RS)-$\alpha$-cyano-3 -phonoxybenzyl-(RS)-2-(4-ch1orophenyl)-3-methylbutyrate] and the effect of carbaryl on the toxicity of fenvalerate. Rats were treated with fenvalerate (50 mg/kg, 100 mg/kg), carbaryl (50 mg/kg, 100 mg/kg) or mixtures of the two compounds (fenvalerate+carbaryl: 50 mg/kg+50 mg/kg, 50 mg/kg+100 mg/kg) by oral administration for 1~3 weeks. Control groups were treated with corn oil. The experimental results were summarized as follows. 1. LD$_{50}$ values of fenvalerate and carbaryl in male rats were 385 mg/kg and 625 mg/kg respectively. When 50 mg/kg and 100 mg/kg of carbaryl were administratrd, LD$_{50}$values of fenvalerate were 265 mg/kg and 225 mg/kg respectively. 2. Biochemical parameters such as ALT, LDH and glucose in serum were much more increased in the groups treated with mixture than the groups treated with either one of fenvalerate or carbaryl. 3. The groups treated with carbaryl and mixture for 3 weeks, the contents of cytochrome P-450 in the liver were significantly increased. In renal microsomal fractions, however, no significant changes of drug metabolizing enzyme activities were observed. 4. The activities of aniline hydroxylase in hepatic microsomal fractions were increased in the groups treated with fenvalerate and mixture and activity was much more increased in the groups treated with mixture. 5. The activities of ATPase in the groups treated with fenvalerate were decreased than that of groups treated with mixture. TBA values and the activity of glucose-6 -phosphatase in the liver were not significantly changed. 6. In mixture treated groups, the activities of cholinesterase in serum and in the liver were more decreased than those of carbaryl treated groups. The activities of carboxylesterase in serum in the liver were slightly increased in mixture treated groups, but in fenvalerate treated groups, the activities of carboxylesterase were much more increased than those of control groups. 7. As a result of this study, when carbaryl was as the synergist of fenvalerate, carbaryl inhibited the activities of esterases, so the toxicity of fenvalerate was increased.sed.

  • PDF

Toxicogenomics Analysis on Thioacetamide-induced Hepatotoxicity in Mice

  • Lim, Jung-Sun;Jeong, Sun-Young;Hwang, Ji-Yoon;Park, Han-Jin;Cho, Jae-Woo;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.126-133
    • /
    • 2006
  • Thioacetamide (TA) is well known hepatotoxic and hepatocarcinogenic agent. TA also diminishes the contents of hepatic cytochrome P450 and inhibits the enzyme activity of the hepatic mixed function oxidases. TA metabolite, thioacetamide-s-oxide, is further transformed into a still unknown highly reactive metabolite that binds to macromolecules. In this study, we focused on TA-induced gene expression at hepatotoxic dose. Mice were exposed to two levels (5 mg/kg or 50 mg/kg i.p.) of TA, sampled at 6 or 24 h, and hepatic gene expression levels were determined to evaluate dose and time dependent changes. We evaluated hepatotoxicity by serum AST and ALT level and histopathological observation. Mean serum activities of the liver leakage enzymes, AST and ALT, were slightly increased compare to control. H & E and PAS evaluation of stained liver sections revealed TA-associated histopathological finding in mice. Centrilobular eosinophilic degeneration was observed at high dose-treated mice group. Hepatic gene expression was analyzed by QT clustering. Clustering of high dose-treated samples with TA-suggests that gene expressional changes could be associated from toxicity as measured by traditional biomarkers in this acute study.

Co-administration of Paroxetine and Haloperidol : Changes of Symptoms and Blood Level of Haloperidol, Reduced Haloperidol (만성 정신분열증 환자에서 Paroxetine과 Haloperidol 병합투여시 정신병리증상과 Haloperidol, Reduced Haloperidol 혈중농도의 변화)

  • Han, Chang Su;Lee, Min Soo;Kim, Pyo Han
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.2
    • /
    • pp.251-257
    • /
    • 1996
  • Selective serotonin reuptake inhibitors(SSRIs), as haloperidol, ore metabolized in the cytochrome P450IID6. They can cause inhibition of metabolism of antipsychotics to elevate the serum level of antipsychotics and exacerbate the extrapyramidal symptoms when co-administered with antipsychotics. Among these SSRIs, there ore a few studies about paroxetine compared to fluoxetine or sertraline. In this study, we have intended to know the drug interaction of paroxetine and haloperidol when co-administered two drugs for the chronic schizophrenics by assessing the changes of positive, negative symptoms and extrapyramidal symptoms. for this purpose, we selected 29 subjects, the chronic schizophrenics with no physical problems. They were under maintenance therapy of haloperidol. They ore randomly assigned to placebo group(n=12) and drug group(n=17) by using double blind method. And then, placebo or paroxetine 20mg were administered to the subjects of each groups during 8 week period. We have assessed their psychopathology and extrapyramidal symptoms using Positive and Negative Syndrome Scale(PANSS), Hamilton Rating Scale lor Depression(HRSD), Simpson-Angus Scale at 0, 2, 4, 6, 8 weeks and serum haloperidol, reduced haloperidol levels at 0, 4, 8 weeks during the period. The results ore analysed by using repeated measure MANOVA. 27 subjects have completed the study during 8 weeks. among the subjects, 1) PANSS, HRSD ; no significant difference between groups. 2) Simpson-Angus Scale ; no significant change according to the time and no significant difference between the groups(no group and time effect). 3) Haloperidol and reduced haloperidol level ; no significant change. When co-administered paroxetine and haloperidol, there ore no significant changes of the psychopothology and no significant changes of the extrapyramidal symptoms. In this result, paroxetine seems to be not to affect the metabolism of haloperidol.

  • PDF

Effects of absorbents on growth performance, blood profiles and liver gene expression in broilers fed diets naturally contaminated with aflatoxin

  • Liu, J.B.;Yan, H.L.;Cao, S.C.;Hu, Y.D.;Zhang, H.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.294-304
    • /
    • 2020
  • Objective: The study was conducted to evaluate the effects of the absorbent (a mixture of activated carbon and hydrated sodium calcium aluminosilicate) on growth performance, blood profiles and hepatic genes expression in broilers fed diets naturally contaminated with aflatoxin. Methods: A total of 1,200 one-day-old male chicks were randomly assigned to 6 treatments with 10 replicate cages per treatment. The dietary treatments were as follows: i) control (basal diets); ii) 50% contaminated corn; iii) 100% contaminated corn; iv) control+1% adsorbent; v) 50% contaminated corn+1% absorbent; vi) 100% contaminated corn+1% absorbent. Results: During d 1 to 21, feeding contaminated diets reduced (p<0.05) body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI), but increased (p<0.05) feed-to-gain ratio (F/G). The absorbent supplementation increased (p<0.05) BW, ADG, and ADFI. There were interactions (p<0.05) in BW, ADG, and ADFI between contaminated corn and absorbent. Overall, birds fed 100% contaminated diets had lower (p<0.05) final BW and ADG, but higher (p<0.05) F/G compared to those fed control diets. The absorbent addition increased (p<0.05) serum albumin concentration on d 14 and 28 and total protein (TP) level on d 28, decreased (p<0.05) alanine transaminase activity on d 14 and activities of aspartate aminotransferase and alkaline phosphatase on d 28. Feeding contaminated diets reduced (p<0.05) hepatic TP content on d 28 and 42. The contaminated diets upregulated (p<0.05) expression of interleukin-6, catalase (CAT), and superoxide dismutase (SOD), but downregulated (p<0.05) glutathione S-transferase (GST) expression in liver. The absorbent supplementation increased (p<0.05) interleukin-1β, CAT, SOD, cytochrome P450 1A1 and GST expression in liver. There were interactions (p<0.05) in the expression of hepatic CAT, SOD, and GST between contaminated corn and absorbent. Conclusion: The results suggest that the naturally aflatoxin-contaminated corn depressed growth performance, while the adsorbent could partially attenuate the adverse effects of aflatoxin on growth performance, blood profiles and hepatic genes expression in broilers.

Preventive Effects of Lycopene-Enriched Tomato Wine against Oxidative Stress in High Fat Diet-Fed Rats

  • Kim, A-Young;Jeon, Seon-Min;Jeong, Yong-Jin;Park, Yong-Bok;Jung, Un-Ju;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2011
  • This study was performed to investigate the antioxidant mechanism of tomato wine with varying lycopene content in rats fed a high fat diet (HFD). Male Sprague-Dawley rats were randomly divided into five groups (n=10 per group) and fed an HFD (35% of total energy from fat) plus ethanol (7.2% of total energy from alcohol), tomato wine with varying lycopene content (0.425 mg%, 1.140 mg% or 2.045 mg% lycopene) or an isocaloric control diet for 6 weeks. Mice fed HFD plus ethanol significantly increased erythrocyte hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) levels with increases in activities of erythrocyte antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) compared to pair-fed rats. Supplementation of tomato wine with varying lycopene content decreased ethanol-mediated increases of erythrocyte lipid peroxidation and antioxidant enzyme activities in HFD-fed rats, and tomato wine with higher lycopene appeared to be more effective. Tomato wine also dose-dependently lowered TBARS levels with decreased pro-oxidant enzyme, xanthine oxidase (XOD) activity in plasma of HFD-fed rats. In contrast to erythrocytes, the inhibitory effects of tomato wine on hepatic lipid peroxidation were linked to increased hepatic antioxidant enzymes (SOD and CAT) and alcohol metabolizing enzyme (alcohol dehydrogenase and aldehyde dehydrogenase) activities. There were no significant differences in hepatic XOD and cytochrome P450-2E1 activities among the groups. Together, our data suggest that tomato wine fortified with lycopene has the potential to protect against ethanol-induced oxidative stress via regulation of antioxidant or pro-oxidant enzymes and alcohol metabolizing enzyme activities in plasma, erythrocyte and liver.

Effect of Styrene on Hepatic Activities of Antioxidant Enzymes in Rats (스티렌이 흰쥐의 간 조직 중 항산화계 효소 활성에 미치는 영향)

  • Lee, Jong-Ryol;Kim, Dong Hun;Lee, Sang-Min
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.678-687
    • /
    • 2021
  • Styrene is a commercially important chemical used mainly in the production of raw materials and plastics. To determine the effect of styrene on hepatic activities of antioxidant enzymes, styrene was treated to Sprague-Dawley rats at 50 mg/kg, 200 mg/kg and 400 mg/kg (i.p) twice a day for 4 days. There were determined the significantly increased activities of serum AST (aspartate aminotransferase), ALT (alanine aminotransferse), and the increased content of MDA (malondialdehyde) at the dose of 400 mg/kg compared to the control. The hepatic activities of XO (xanthine oxidase) and CYPdAH (cytochrome P450 dependant aniline oxidase) in the dose of 400 mg/kg compared to the dose of 200 mg/kg were more increased, which means the excessive ROS (reactive oxygen species)s were produced during Phase I. In addition, significantly decreased were rates of the hepatic activities of GPx (glutathione peroxidase), CAT (catalase), SOD (superoxide dismutase) and GST (glutathione S-transferase) at the dose of 400 mg/kg compared to the control. And, the group at the dose of 400 mg/kg showed more significantly decreased GSH (glutathione) level than the group at the dose of 200 mg/kg. The decrease in GSH could ascribe to the toxic metabolites of styrene, such as styrene oxide. In conclusion, these results indicate that the excessive ROSs and the toxic metabolites of styrene may result in the hepatotoxicity, and be related to their imbalanced activities for antioxidant enzymes.

Effects of Aralia elata Water Extracts on Activities of Hepatic Oxygen Free Radical Generating and Scavenging Enzymes in Streptozotocin-Induced Diabetic Rats (두릅열수추출물이 당뇨유발 흰쥐의 간조직 중 유해 활성산소 대사효소계 활성에 미치는 영향)

  • 김명주;조수열;이미경;신경희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.653-658
    • /
    • 2004
  • Oxidative stress is currently suggested as a mechanism underyling diabetes. Accordingly, the present study was designed to evaluate the effect of Aralia elate water extracts (AEW) on activities of hepatic oxygen free radical generating and scavenging enzymes in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats divided into nondiabetic group, diabetic group, and diabetic-AEW supplemented group. The extract was supplemented in 1.14% of raw Aralia elata/kg diet for 7 weeks. Diabetes was induced by injecting STZ (55 mg/kg BW, ip) once 2 weeks before sacrifying. The hepatic cytochrome P-450 content, xanthine oxidase and aminopyrine N-demethylase activities were significantly lowered in the diabetic group compared to the nondiabetic group. Whereas, the activities of aniline hydroxylase and oxygen free radical scavenging enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione S-transferase, were significantly higher in the diabetic group than in the nondiabetic group. However, the supplementation of AEW normalized these enzyme activities in STZ-induced diabetic rats. When the AEW was supplemented with the diabetic rats, hepatic glutathione content was markedly elevated as well as lipid peroxide level was significantly lowered compared to those of the diabetic group. Thus, these results suggested that AEW supplement enhanced the activities of oxygen species metabolizing enzymes in STZ-induced diabetic rats.

The Roles of Arachidonic Acid and Calcium in the Angiotensin II-induced Inhibition of $Na^+$ Uptake in Renal Proximal Tubule Cells

  • Park, Soo-Hyun;Koh, Hyun-Joo;Lee, Yeun-Hee;Son, Chang-Ho;Park, Min-Kyoung;Lee, Young-Jae;Han, Ho-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.83-91
    • /
    • 1999
  • Angiotensin II (ANG II) has a biphasic effect on $Na^+$ transport in proximal tubule: low doses of ANG II increase the $Na^+$ transport, whereas high doses of ANG II inhibit it. However, the mechanisms of high dose ANG II-induced inhibition on $Na^+$ uptake are poorly understood. Thus the aim of the present study was to investigate signal transduction pathways involved in the ANG II-induced inhibition of $Na^+$ uptake in the primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined serum-free medium. ANG II $(10^{-9}\;M)-induced$ inhibition of $Na^+$ uptake was blocked by losartan $(10^{-8}\;M,\;AT_1\;antagonist),$ but not by PD123319 $(10^{-8}\;M,\;AT_2\;antagonist)$ (P<0.05). ANG II-induced inhibition of $Na^+$ uptake was also completely abolished by neomycin $(10^{-4}\;M,$ PLC inhibitor), W-7 $(10^{-4}\;M,$ calmodulin antagonist), and $AACOCF_3\;(10^{-6}\;M,\;PLA_2\;inhibitor)$ (P<0.05). ANG II significantly increased $[^3H]arachidonic$ acid (AA) release compared to control. The ANG II-induced $[^3H]AA$ release was blocked by losartan, $AACOCF_3,$ neomycin, and W-7, but not by PD123319. ANG II-induced $[^3H]AA$ release in the presence of extracellular $Ca^{2+}$ was greater than in $Ca^{2+}-free$ medium, and it was partially blocked by TMB-8 $(10^{-4}\;M,$ intracelluar $Ca^{2+}$ mobilization blocker). However, in the absence of extracellular $Ca^{2+},$ it was completely blocked by TMB-8. In addition, econazole $(10^{-6}\;M,$ cytochrome P-450 monooxygenase inhibitor) and indomethacin $(10^{-6}\;M,$ cyclooxygenase inhibitor) blocked ANG II-induced inhibition of $Na^+$ uptake, but NGDA $(10^{-6}\;M,$ lipoxygenase inhibitor) did not affect it. In conclusion, $PLA_2-mediated$ AA release is involved in ANG II-induced inhibition of $Na^+$ uptake and is modulated by $[Ca^{2+}]_i$ in the PTCs.

  • PDF

Phenotyping of Flavin-Containing Monooxygenase (FMO) Activity and Factors Affecting FMO Activity in Korean

  • Jeon, Sun-Ho;Park, Chang-Shin;Cha, Young-Nam;Chung, Woon-Gye
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.127-133
    • /
    • 2001
  • Together with cytochrome P450 (CYP), flavin-containing monooxygenase (FMO) present in liver microsomes oxidizes various endogenous and exogenous chemicals. In an effort to determine the human FMO activity, we have developed two non-invasive urine analysis methods using caffeine (CA) and ranitidine (RA) as the probe compounds. As the production of theobromine (TB) and ranitidine N-oxide (RANO) from CA and RA is catalyzed primarily by the hepatic FMO, we have assigned the urinary molar ratios of TB/CA and RA/RANO as the in vivo FMO activity. In 200 age-matched Korean volunteers, the obtained TB/CA ratio ranged from 0.4 to 15.2 (38-fold difference) and the RA/RANO ratio from 5.7 to 27.2 (4.8-fold). The FMO activity of 20's, determined by caffeine metabolism, was the highest (2.5$\pm$l.9) and those of 30's, 40's, 50's, 60's and 70's were 40%, 50%, 24%, 39% and 36% of the 20's, respectively. Intake of grapefruit juice, known to contain flavonoids, inhibited the in vivo FMO (TB/CA) activity by 79%. Addition of the flavonoids like naringin, quercitrin and kaempferol, present in grapefruit juice, to the in vitro microso-mal FMO assay, thiobenzamide S-oxidation, produced 75%, 70% and 60% inhibition, respectively. Obtained Ki values of quercitrin, kaempferol and naringin on the in vitro FMO activity were 6.2, 12.0 and 13.9 $\mu\textrm{M}$, respectively. This suggested that the dose of drug should need to be adjusted to suit the individual FMO activities when the drugs metabolized by FMO are given to patients. As the intake of grapefruit juice has been identified to inhibit the FMO as well as CYP3A4 and lA2 activities, patients taking drugs metabolized by these enzymes should not drink grapefruit juice as the carrier.

  • PDF