• Title/Summary/Keyword: Cytochrome C oxidase

Search Result 386, Processing Time 0.024 seconds

Genetic diversity of spotted scat (Scatophagus argus) in Vietnam based on COI genes

  • Huy Van Nguyen;Minh Tu Nguyen;Nghia Duc Vo;Nguyen Thi Thao Phan;Quang Tan Hoang
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.12
    • /
    • pp.637-647
    • /
    • 2022
  • A spotted scat, Scatophagus argus, has a high nutritional value and is among Asia's most widely consumed fish species. Thua Thien Hue's consumption market considers this species to be of high economic value and requires protection and conservation of the population. However, the studies on the identification and genetic diversity of S. argus distributed in Vietnam are still lacking. Therefore, mitochondrial cytochrome c oxidase subunit I (COI) gene was utilized to distinguish different populations and investigate the genetic diversity of two populations of S. argus from Tam Giang lagoon, Thua Thien Hue province (n = 31) and Ca Mau province (n = 14). The sequencing results indicated 13 distinct haplotypes among 45 sequences. Five single nucleotide polymorphisms were observed to distinguish Hue spotted scat population. The S. argus population in Ca Mau province was higher haplotype diversity (Hd) and nucleotide diversity (π) than those of Thua Thien Hue province, which demonstrates that there are minor differences between haplotypes. There were genetic distances ranging from 0%-4% within the populations and 6.67% between the two populations. In addition to the sequencing, the comparison of morphology, biology, culture, and the growth rate was sufficient to distinguish the spotted scat S. argus in Thua Thien Hue from Ca Mau.

Biochemical mechanisms of fumigant toxicity by ethyl formate towards Myzus persicae nymphs (복숭아혹진딧물(Myzus persicae) 약충에 대한 에틸포메이트 훈증 독성의 생화학적 메커니즘)

  • Kim, Kyeongnam;Lee, Byung-Ho;Park, Jeong Sun;Yang, Jeong Oh;Lee, Sung-Eun
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.271-277
    • /
    • 2017
  • Ethyl formate has been used for the control of insect pests by fumigation. However, there were not many reports to show its target site of fumigant toxicity on insect pests since its first use in the agricultural industry. In the present study, we showed the presumable target sites of ethyl formate fumigation in insect pests using Myzus persicae nymphs. After ethyl formate fumigation, the nymphs of this species were collected and the changes at the biochemical and molecular level were determined. The activity of cytochrome c oxidase (COX) was approximately two-fold higher after ethyl formate fumigation. In addition, the expression levels of acetylcholinesterase (AChE) decreased gradually with increasing ethyl formate concentration. These two findings suggested that COX and AChE might be the major target sites of ethyl formate fumigation. In addition to these results, the analysis of lipid content using MALDI-TOF MS/MS identified 9 phospholipids differently generated 2-fold higher in the ethyl formate-treated nymphs than that in the control nymphs, thereby leading to changes in cell membrane composition in M. persicae nymphs. Therefore, the ethyl formate fumigation caused lethal effects on M. persicae nymphs by changing COX activity, AChE gene expression, and phospholipid production.

Analysis of the orf 282 Gene and Its Function in Rhodobacter sphaeroide 2.4.1 (R. sphaeroides 에서의 orf282 유전자의 분석과 이들의 기능)

  • Son, Myung-Hwa;Lee, Sang-Joon
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1009-1017
    • /
    • 2012
  • The orf282 gene of Rhodobacter sphaeroides is located between the ccoNOQP operon encoding $cbb_3$ terminal oxidase and the fnrL gene encoding an anaerobic activator, FnrL. Its function remains unknown. In an attempt to reveal the function of the orf282 gene, we disrupted the gene by deleting a portion of the orf282 gene and constructed an orf282-knockout mutant. Two FnrL binding sites were found to be located upstream of orf282, and it was demonstrated that orf282 is positively regulated by FnrL. The orf282 gene is not involved in the regulation of spectral complex formation. The $cbb_3$ oxidase activity detected in the orf282 mutant was comparable to that in the wild-type sample, indicating that the orf282 gene is not involved in the regulation of the ccoNOQP operon and the biosynthesis of the cbb3 cytochrome c oxidase. The elevated promoter activity of the nifH and nifA genes, which are the structural genes of nitrogenase and its regulator, respectively, in the orf282 mutant, suggests that the orf282 gene product acts as a negative effector for nifH and nifA expression.

Enzyme Activities Related to the Methanol Oxidation of Mycobacterium sp. strain JCl DSM 3803

  • Youngtae Ro;김응빈;김영민
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.209-209
    • /
    • 2002
  • Mycobacterium sp. strain JCl DSM 3803 grown in methanol showed no methanol dehydrogenase or oxidase activities found in mast methylotrophic bacteria and yeasts, respectively. Even though the methanol-grown cells exhibited a little methanol-dependent oxidation by cytochrome c-dependent methanol dehydrogenase and alcohol dehydrogenase, they were not the key enzymes responsible for the methanol oxidation of the cells, in that the cells contained no c-type cytochrome and the methanol oxidizing activity from the partially purified alcohol dehydrogenase was too low, respectively. In substrate switching experiments, we found that only a catalase-peroxidase among the three types of catalase found in glucose-grown cells was highly expressed, in the methanol-grown cells and that its activity was relatively high during the exponential growth phase in Mycobacterium sp. JCl. Therefore, we propose that catalase-peroxidase is an essential enzyme responsible for the methanol metabolism directly Of indirectly in Mycobacterium sp. JCl.

Glucose Oxidase/glucose Induces Apoptosis in C6 Glial Cells via Mitochondria-dependent Pathway

  • PARK Min Kyu;KIM Woo Sang;LEE Young Soo;KANG Young Jin;CHONG Won Seog;KIM Hye Jung;SEO Han Geuk;LEE Jae Heun;CHANG Ki Churl
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.207-213
    • /
    • 2005
  • It has been proposed that reactive oxygen species (ROS), mainly superoxide anion ($O_2^-$) and hydrogen peroxide ($H_2O_2$), may mediate oxidative stress. Production of $H_2O_2$ during oxidative phosphorylation, inflammation, and ischemia can cause oxidative stress leading to cell death. Although glucose oxidase (GOX) in the presence of glucose continuously generates $H_2O_2$, it is not clear whether GOX produces apoptotic cell death in C6 glial cells. Thus, we investigated the mechanism by which GOX induces cell death. Cells were incubated with different concentration of GOX in the presence of glucose where cell viability, TUNEL and DNA ladder were analyzed. Results indicated that GOX exhibited cytotoxicity in a dose dependent manner by MTT assay. TUNEL positive cell and DNA laddering showed that GOX-induced cytotoxicity was due to apoptosis. Western blot analysis also showed that the cleaved caspase-3 level was detected in the GOX-treated cells at 10 mU/ml and increased dramatically at 30 mU/ml. Cleaved PARP also appeared at 10 mU/ml and lasted at 20 or 30 mU/ml of GOX. Cytochrome c level was increased by GOX dose dependently, which was contrast to Bcl-2 expression level. These results suggest that GOX induces apoptosis through caspase-3 activation, which followed by cytochrome c release from mitochondria through regulating of Bcl-2 level.

Molecular Characterization of Taenia multiceps Isolates from Gansu Province, China by Sequencing of Mitochondrial Cytochrome C Oxidase Subunit 1

  • Li, Wen Hui;Jia, Wan Zhong;Qu, Zi Gang;Xie, Zhi Zhou;Luo, Jian Xun;Yin, Hong;Sun, Xiao Lin;Blaga, Radu;Fu, Bao Quan
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.197-201
    • /
    • 2013
  • A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.

Evolution of sea Urchin Strongylocentrotus intermedius Based on DNA Sequences of a Mitochondrial Gene, Cytochrome c Oxidase Subunit I (미토콘드리아 유전자, 치토그롬 옥시다제(subunit I)의 염기서열을 이용한 새치성게(Strongylocentrotus intermedius)의 진화과정 분석)

  • Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 2000
  • Sea urchin S. intermedius occurring in the Korean east coast is a cold water species that belongs to the family Strongylocentrotidae of Echinoidea. Although it is known that there are nine species in the family, species identification criteria, phylogenetic relationships, time and process of evolution of the family members have not been uncovered clearly. In the present study, I tried to find some clues to such problems for S. intermedius by means of DNA sequences. For this, cytochrome c oxidase subunit I (COI), one of the mitochondrial genes that evolve fast and follow maternal inheritance was analyzed. DNA was extracted from the female gonad of S. intermedius, a segment of COI gene amplified by polymerase chain reaction (PCR), and finally a total of 1077 base pair sequence of COI obtained by cloning and sequencing the PCR product. The sequence was compared with homologous genes of other sea urchins and echinoderm species. Phylogenetic trees of the COI gene segment revealed that S. intenedius is a sister species of S. purpuratus which lives along the east coast of the Paciflc. With reference to the fossil records of sea urchins and genetic distances in the molecular phylogenies, it is estimated that the two species were separated about 0.89 million years ago when the earth temperature fluctuated significantly. The current disjunct distribution patterns of the two species and the climate change of the earth at the time of separation suggest that speciation might have occurred by vicariance. The COI gene sequence obtained here now can be used as a molecular character which discerns S. intermedius from the other sea urchin species of Strongylocentrotidae.

  • PDF

Molecular identification of fungus gnats from shiitake mushroom in Korea (국내 표고버섯 주요 버섯파리의 분자생물학적 종 동정 및 발생양상)

  • Kwon, Sun-Jung;Kim, Hyeong Hwan;Song, Jin Sun;Kim, Dong Hwan;Cho, Myoung Rae;Yang, Chang Yul;Kang, Taek Jun;Ahn, Seung Joon;Jeon, Sung Wook
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.201-207
    • /
    • 2013
  • Fungus gnats are usually found in mushroom farm and have recently become important pest because they can cause severe damage and reduce the production on shiitake mushroom. Usually shiitake mushrooms are cultivated on both oak bed logs and in the artificial sawdust beds in greenhouses. Using yellow sticky trap, the dipteran species in shiitake mushroom farm were collected from May to September in Kyonggi-do and Chungcheong-do in 2013. To identify the main species of fungus gnat on the shiitake farm in Korea, the collected samples were determined the sequence of cytochrome c oxidase subunit I (COI) by DNA barcoding. The phylogeny based on maximum likelihood analyses from COI sequence showed that Bradysia difformis and B. alpicola were main species of shiitake bed log and Scatopsidae sp. and B. difformis were dominant species of sawdust beds.

Physiobiochemical Characteristics of Hybrid Rice (1대 잡종벼의 생리생화학적 특성)

  • Tae, Hyun-Sook;Kim, Kil-Ung;Shin, Dong-Hyun;Wenxiong Lin;Moon, Huhn-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.5
    • /
    • pp.608-618
    • /
    • 1995
  • This study was conducted to determine physiobiochemical basis of heterosis using rice hybrids such as Shanyou 63 (Zhenshan 97As Minhui 63) and Teyou 63 (Longtepu A Minhui 63) as compared with inbred rice like Milyang 23. Seed protein patterns of rice hybrid showed complementary genetic characteristics inherited from their parents. Hybrid rice had larger embryo and higher $\alpha$-amylase activity than those of inbred rice. The larger embryo of hybrid was significantly correlated with tillering ability and high number of low node tillers jplant increased by 60~70% in Shanyou 63, leading to higher productive tillers/plant which directly influenced on grain yield of hybrid rice. These characters were further supported by high chlorophyll content in hybrids. Exogenous application of GA$_3$ (0.02 ppm) on inbred rice like Milyang 23, increased significantly $\alpha$-amylase activity, but no effect of GA$_3$ on hybrid rice was observed, indicating that sufficient amount of GA$_3$ is endogenously present in hybrid rice, showing 1 to 3.5 fold higher activity of $\alpha$-amylase in hybrid rice, which trigger heterosis from the germinating stage. Further, activity of cytochrome c oxidase was 2.66 to 5.52 fold higher in hybrid rice than that of inbred rice, indicating that rice hybrids have very active metabolism reflecting vigorous growth starting from the germinating stage, in turn leading to higher tillering ability.

  • PDF

Blue Light Photosensitization in Mitochondrial Membrane of Plant Cells (식물세포 미토콘드리아막에서 일어나는 청색광 Photosensitization)

  • Kim, Kyung-Hyun;Kim, Jong-Pyung;Jung, Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.94-100
    • /
    • 1987
  • Plant mitochondria, irradiated with blue-colored $sunlight(350{\sim}500nm)$ under aerobic and anaerobic conditions, were assayed as to the electron transfer activity of respiratory enzyme system, and compared with those irradiated with orange-colored light(white sunlight minus blue-colored light). The respiratory activity of mitochondria was most seriousely inhibited by illumination with blue-colored light under aerobic condition. Deaeration of mitochondrial suspension resulted in substantial decrease of the photoinhibition by blue-colored light. Meanwhile, orange-colored light demonstrated much less effectiveness-almost ineffectiveness-in causing the inhibition of mitochondrial respiration system. The results of enzymatic assay revealed a strong possibility that FMN in NDH and heme group at least in cytochrome c oxidase, but not FAD in SDH, are the photodynamic sensitizers in mitochondrial inner membrane. Also worthwhile to note is the significant difference from the others of SDH in its photoinhibitory response to the light quality of visible light; that the inhibition of SDH by irradiation was not affected by atmospheric condition and that orange-colored light gave rise to considerable extents of inhibition to the enzyme. This observation was tentatively interpreted in terms of photosensitized reaction not involving molecular oxygen possibly catalyzed by Fe-S centers in the enzyme. The superoxide production and the membrane peroxidation of mitochondria under various treatments also indicated that there was blue-light photodynamic reaction in mitochondria involving active oxygens.

  • PDF