• Title/Summary/Keyword: Cytochrome C oxidase

Search Result 386, Processing Time 0.024 seconds

High-mobility Group Box 1 Induces the Epithelial-mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression via Snail Activation (HMGB1/Snail cascade에 의한 epithelial-mesenchymal transition 및 glycolytic switch, mitochondrial repression 유도)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1179-1191
    • /
    • 2019
  • Cancer cells undergo the epithelial-mesenchymal transition (EMT) and show unique oncogenic metabolic phenotypes such as the glycolytic switch (Warburg effect) which are important for tumor development and progression. The EMT is a critical process for tumor invasion and metastasis. High-mobility group box 1 (HMGB1) is a chromatin-associated nuclear protein, but it acts as a damage-associated molecular pattern molecule when released from dying cells and immune cells. HMGB1 induces the EMT, as well as invasion and metastasis, thereby contributing to tumor progression. Here, we show that HMGB1 induced the EMT by activating Snail. In addition, the HMGB1/Snail cascade was found induce a glycolytic switch. HMGB1 also suppressed mitochondrial respiration and cytochrome c oxidase (COX) activity by a Snail-dependent reduction in the expression of the COX subunits COXVIIa and COXVIIc. HMGB1 also upregulated the expression of several key glycolytic enzymes, including hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), and phosphoglycerate mutase 1 (PGAM1), in a Snail-dependent manner. However, HMGB1 was found to regulate some other glycolytic enzymes including lactate dehydrogenases A and B (LDHA and LDHB), glucose transporter 1 (GLUT1), and monocarboxylate transporters 1 and 4 (MCT1 and 4) in a Snail-independent manner. Transfection with short hairpin RNAs against HK2, PFKFB2, and PGAM1 prevented the HMGB1-induced EMT, indicating that glycolysis is associated with HMGB1-induced EMT. These findings demonstrate that HMGB1 signaling induces the EMT, glycolytic switch, and mitochondrial repression via Snail activation.

COI-Based Genetic Structure of an Exotic Snapping Turtle Chelydra serpentina Imported to South Korea

  • Baek, Su Youn;Shin, ChoRong;Kim, Kyung Min;Choi, Eun-Hwa;Hwang, Jihye;Jun, Jumin;Park, Taeseo;Kil, Hyun Jong;Suk, Ho Young;Min, Mi-Sook;Park, Yoonseong;Lee, YoungSup;Hwang, Ui Wook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.4
    • /
    • pp.354-362
    • /
    • 2020
  • A common snapping turtle Chelydra serpentina inhabiting North America is internationally protected as an endangered species. It is known that the individuals of common snapping turtles were imported to South Korea as pets, and after being abandoned, some inhabit the natural ecosystem of South Korea like wild animals. No genetic survey has yet been performed for the common snapping turtles imported to South Korea. Hereby, cytochrome c oxidase subunit I (COI) information, which is 594 bp long, was determined for a total of 16 C. serpentina individuals, of which one was found in nature, twelve legally imported and their descendants, and the other three were provided from the Kansas Herpetological Society, USA. The obtained data were combined with thirteen COI sequences of C. serpentina retrieved from NCBI GenBank for the subsequent population genetic analyses. The results showed that there exist five haplotypes with high sequence similarity (only three parsimoniously informative sites). In the TCS and phylogenetic analyses, all the examined C. serpentina samples coincidently formed a strong monoclade with those collected mostly from Kansas State, USA, indicating that the imported ones to South Korea are from the central North America. In addition, there found the amino acid changes and the high degree of nucleotide sequence differences between C. serpentina and C. rossignoni with some important morphological characters. It is expected that the present results could provide an important framework for systematic management and control of exotic snapping turtles imported and released to nature of South Korea.

Metabolic Imbalance between Glycolysis and Mitochondrial Respiration Induced by Low Temperature in Rice Plants (벼 냉해의 초기 기작으로서 생체막과 세포질 사이의 대사 불균형)

  • Lee, Keun-Pyo;Boo, Yong-Chool;Jung, Jin
    • Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.236-240
    • /
    • 2000
  • Correlations between mitochondrial respiration, glycolysis activity and overall growth activity of rice (Oryza sativa: cv. Dasan) seedlings during low temperature exposure were studied in order to provide insights into the underlying mechanism for the primary phase of chilling injury in plants. Among cellular membranes involved in energy metabolism, only the mitochondrial inner membrane showed not only physical phase transition at ca. $13^{\circ}C$, as monitored by ESR spin label, but also functional phase transition at the same temperature, as assessed by cytochrome c oxidase activity. The main regulatory enzyme of glycolysis, phosphofructokinase, in situ did not suffer phase transition of its activity at least in the $4{\sim}27^{\circ}C$ range. Low temperature caused a significant accumulation of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P), which disappeared almost completely on rewarming of the seedlings. Temperature profiles of the steady state levels of G6P and F6P revealed the inflection point appearing at around phase transition temperature of the mitochondrial membrane. The results conform to our previous proposition on the mechanism for the early stage events of chilling injury that the accumulation of glycolytic metabolites in cells due to metabolic imbalance at low temperature gives rise to an excess supply of electrons during rewarming period, which, in turn, results in overproduction of active oxygen in mitochondria.

  • PDF

Classification and Phylogenetic Studies of Cephalopods from four countries of South-East Asia (동남아시아 4개국 두족류의 분류 및 계통분류학적 연구)

  • Hwang, Hee Ju;Kang, Se Won;Park, So Young;Chung, Jong Min;Song, Dae Kwon;Park, Hyeongchun;Park, Hong Seog;Han, Yeon Soo;Lee, Jun-Sang;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.32 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • In this study, an attempt has been made to analyze the morphology of Cephalopods distributed in Korea and collected samples from South-East Asian countries including Thailand, Indonesia, Vietnam, and China. A phylogenetic analysis was performed using the mitochondrial gene, Cytochrome c oxidase subunit I (COI) to understand the genetic divergences of the species and validate their origins. For achieving the objectives, samples were collected directly from Thailand Hat Yai, Songkhla, Indonesia Medan, Vietnam Ho Chi Minh, and Vung Tau in August 2015 and from China in September 2015. A total of 23 species of Cephalopods were identified falling under three orders, four familyies and nine genus. The species were distributed under Order: Octopoda (1 family, 3 genus, and 9 species), Order: Sepiolioda (1 family, 2 genus, and 8 species), and Order Teuthoidea (2 family, 4 genus, and 6 species). 23 species which is 1 family 3 genus 9 species in Octopoda, 1 family 2 genus 8 species in Sepiolioda, 2 family 4 genus 6 species in Teuthoidea. Phylogenetic analysis using COI gene was conducted for 18 species. For the remaining 5 species sequencing results showed severe variation and hence were not considered further. The COI phylogenetic analysis for the 18 species of Cephalopods were found consistent with the morphological identification. The excluded species will be subjected for a further detailed analysis.

Development of Real-time PCR Assays for Detection of Dirofilaria immitis from Infected Dog Blood (심장사상충에 감염된 개의 혈액에서 심장사상충 유전자를 검출할 수 있는 실시간 중합효소연쇄반응 기법 개발)

  • Oh, In Young;Kim, Kyung Tae;Jun, Jin Hyun;Shin, Jae-Ho;Sung, Ho Joong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.88-93
    • /
    • 2016
  • Dirofilaria immitis is a filarial nematode parasite that causes cardiopulmonary dirofilariasis in dogs. The purpose of this study was the development of real-time PCR assays for efficient detection of D. immitis. The D. immitis-specific primers confirmed in our previous study and a newly designed TaqMan probe were used for quantitative diagnostics. First, SYBR Green real-time PCR was performed using the specific primers and serially diluted genomic DNA or plasmid DNA, and melting curve analyses were performed after amplification. The melting curve showed one specific peak in each of the genomic and plasmid DNA reactions, suggesting that the primers specifically amplify the D. immitis cytochrome c oxidase subunit I gene. Comparison of SYBR Green and TaqMan real-time PCR using serially diluted plasmid DNA showed higher efficiency and specificity with TaqMan real-time PCR. The real-time PCR assays developed in this study will provide improved diagnostic methods to overcome the limitations of conventional diagnostic tools and facilitate more rapid and accurate diagnoses.

The Temperature-Dependent Development of the Parasitoid Fly, Exorista Japonica (Townsend) (Diptera: Tachinidae) (항온조건에서 긴등기생파리 [Exorista japonica (Townsend)] (Diptera: Tachinidae) 온도별 발육)

  • Park, Chang-Gyu;Seo, Bo Yoon;Choi, Byeong-Ryoel
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.445-452
    • /
    • 2016
  • Exorista japonica is one of the major natural enemies of noctuid larvae, Mythimna separata and Spodoptera litura. The examined parasitoid was obtained from host species M. separata, collected at Gimje city and identified by DNA sequences (partial cytochrome oxidase I, 16S, 18S, and 28S). For purposed of this study, laboratory reared S. litura served as the host species for the development of the E. japonica. The developmental period of E. japonica immature stages were investigated at seven constant temperatures (16, 19, 22, 25, 28, 31, $34{\pm}1^{\circ}C$, RH 20~30%). Temperature-dependent developmental rates and development completion models were developed. E. japonica was successfully developed from egg to adult in $16{\sim}31^{\circ}C$ temperature regimes. Developmental duration was the shortest at $34^{\circ}C$ (8.3 days) and the longest at $16^{\circ}C$ (23.4 days) from egg to pupa development. Pupal development duration was the shortest at $28^{\circ}C$ (7.3 days). Total immature-stage development duration decreased with increasing temperature, and was the shortest at $31^{\circ}C$ (16.3 days) and the longest at $16^{\circ}C$ (45.4 days). The lower developmental threshold was $7.8^{\circ}C$ and thermal constant required to complete total immature-stage development was 370.4 degree days. Among four non-linear temperature-dependent developmental rate models, Briere 1 model had the highest adjusted R-squared (0.96). The distribution model of development completion for total immature stage development of E. japonica was well described by all model ($r^2_{adj}=0.90$) based on the standardized development duration. These results of study would be necessary not only to develop population dynamics model but also to understand fundamental biology of E. japonica.

Reduction of Mitochondrial Electron Transferase in Rat Bile duct Fibroblast by Clonorchis sinensis Infection (간흡충(Clonorchis sinensis)감염에 의한 흰쥐 담관 섬유모세포 미토콘드리아 전자전달효소의 감소)

  • Min, Byoung-Hoon;Hong, Soon-Hak;Lee, Haeng-Sook;Kim, Soo-Jin;Joo, Kyoung-Hwan
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.89-99
    • /
    • 2010
  • Fibroblasts are the most common cells in connective tissue and are responsible for the synthesis of extracellular matrix components. The fibrosis associated with chronic inflammation and injury may contribute to cholangiocarcinoma pathogenesis, particularly through an increase in extracellular matrix components, which participate in the regulation of bile duct differentiation during development. Mitochondria produce ATP through oxidative metabolism to provide energy to the cell under physiological conditions. Also, mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence and aging. Alternations in mitochondrial structure and function are early events of programmed cell death or apoptosis and mitochondria appear to be a central regulator of apoptosis in most somatic cell. Clonorchis sinensis, one of the most important parasite of the human bile duct in East Asia, arouses epithelial hyperplasia and ductal fibrosis. Isolated fibroblast from the bile ducts of rats infected by C. sinensis showed increase of cytoplasmic process. In addition, decrease of cellular proliferation was observed in fibroblasts which was isolated from normal rat bile duct and then cultured in media containing C. sinensis excretory-secretory product. However, the effects of C. sinensis infection on the mitochondrial enzyme distribution is not clearly reported yet. Therefore, we investigated the structural change of C. sinensis infected bile duct and mitochondrial enzyme distribution of the cultured fibroblast isolated from the C. sinensis infected rat bile duct. As a result, C. sinensis infected SD rat bile ducts showed the features of chronic clonorchiasis, such as ductal connective and epithelial tissue dilatation, or ductal fibrosis. In addition, fibroblast in ductal connective tissue was damaged by physical effect of fibrotic tissue and chemical stimulation. Immunohistochemically detected mitochondrial electron transferase (ATPase, COXII, Porin) was decreased in C. sinensis infected rat bile duct and cultured fibroblast from infected rat bile duct. It can be hypothesized that the reason why number of electron transferase decrease in fibroblast isolated from the rat bile duct infected with C. sinensis is because dysfunction of electron transport system is occurred mitochondrial dysfunction, increase of ROS (reactive oxygen species) and apoptosis after chemical damage on the cell caused by C. sinensis infection. Overall, C. sinensis infection induces fibrotic change of ductal connective tissue, mutation of cellular metabolism in fibroblast and mitochondrial dysfunction. Consequently, ductal fibrosis inhibits fibroblast proliferation and decreases mitochondrial electron transferase on fibroblast cytoplasm. It was assumed that the structure of bile duct could not normalized and ductal fibrosis was maintained for a long period of time according to fibroblast metamorphosis and death induced by mitochondrial dysfunction.

Development of the Duplex PCR Method of Identifying Trachurus japonicus and Trachurus novaezelandiae (다중 PCR 분석법을 이용한 전갱이속 어종의 신속한 종판별 분석법 개발)

  • Park, Yeon Jung;Lee, Mi Nan;Kim, Eun Mi;Noh, Eun Soo;Noh, Jae Koo;Park, Jung Youn;Kang, Jung-Ha
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1062-1067
    • /
    • 2018
  • Reliable labeling of fish products can reassure consumers regarding the identity and quality of seafoods. Therefore, techniques that can identify adulteration or mislabeling are valuable. To rapidly identify two Trachurus species, Trachurus japonicus and Trachurus novaezelandiae, a highly efficient, rapid, duplex polymerase chain reaction (PCR) having two species-specific primers simultaneously was identified. This species-specific primer focused on a single nucleotide mismatch in the 3'-terminal base of a primer designed in the mitochondrial cytochrome c oxidase (COI) subunit I DNA. To optimize the duplex PCR condition, gradient PCR reactions were conducted to determine the primer annealing temperature and the primer concentration. The PCR's product was observed on the gel, suggesting that DNA molecules may be useful in differentiating the two species. The length of the amplification fragments were 103 bp for Trachurus japonicus and 214 bp for Trachurus novaezelandiae, which, along with the species-specific primer visualized by agarose gel electrophoresis, enabled accurate distinction of the species of the Trachurus genus. These results indicate that the duplex PCR, which has a species-specific primer based on single nucleotide polymorphism (SNP), can be useful for rapidly differentiating the two species of Trachurus. This duplex PCR analysis is simple, rapid, and reliable, and could be beneficial to protecting consumers' rights.

Effects of chronic alcohol and excessive iron intake on mitochondrial DNA damage in the rat liver (만성 알코올과 철분의 과잉 섭취가 흰쥐의 간 세포 미토콘드리아 DNA 손상에 미치는 영향)

  • Park, Jung-Eun;Lee, Jeong-Ran;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.48 no.5
    • /
    • pp.390-397
    • /
    • 2015
  • Purpose: In this study, we investigated the effects of chronic alcohol and excessive iron intake on mitochondrial DNA (mtDNA) damage and the progression of alcoholic liver injury in rats. Methods: Twenty-four Sprague-Dawley male rats were divided into four groups (Control, EtOH, Fe, and EtOH + Fe), and fed either control or ethanol (36% of total calories) liquid diet with or without 0.6% carbonyl iron for eight weeks. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, liver malondialdehyde concentrations were measured by colorimetric assays. Liver histopathology was examined by Hematoxylin-eosin staining of the fixed liver tissues. The integrity of the hepatic mtDNA and nuclear DNA was measured by long-range PCR. The gene expression levels of cytochrome c oxidase subunit 1 (Cox1) and NADH dehydrogenase subunit 4 (Nd4) were examined by real-time PCR. Results: Serum ALT and AST activities were significantly higher in the EtOH+Fe group, as compared to the Control group. Similarly, among four groups, liver histology showed the most severe lipid accumulation, inflammation, and necrosis in the EtOH + Fe group. PCR amplification of near-full-length (15.9 kb) mtDNA showed more than 50% loss of full-length product in the liver of the EtOH + Fe group, whereas amounts of PCR products of a nuclear DNA were unaffected. In addition, the changes in the mtDNA integrity showed correlation with reductions in the mRNA levels of mitochondrial gene Cox1 and Nd4. Conclusion: Our data suggested that the liver injury associated with excessive iron and alcohol intake involved mtDNA damage and corresponding mitochondrial dysfunction.

Changes in planktonic bivalve larvae of Tegillarca granosa and Anadara kagoshimensis in the Boseong coastal waters of South Korea (보성 연안해역에서 꼬막과 새꼬막 부유유생 출현의 변화)

  • Kim, Hyun-Jung;Kang, JunSu;Jung, Seung Won;Park, Yong-Joo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.351-361
    • /
    • 2019
  • To investigate the temporal distribution of planktonic larvae of Tegillarca granosa and Anadara kagoshimensis in the Boseong coastal waters of South Korea, samples of planktonic bivalve larvae were taken from the coastal waters from June to September 2018 (this consisted of monthly sampling in June, July, and September with three- or four-day interval sampling in August). The samples were analyzed using metagenomic next-generation sequencing methods (target gene: mitochondria cytochrome c oxidase 1 region). In this study, a total of 21 bivalve operational taxonomic units (OTUs) were detected with the most abundant bivalve OTUs (relative mean abundance >1%) belonging to Magallana sikamea, Xenostrobus atratus, Musculista senhousia, Magallana gigas, Sinonovacula constricta, Anadara kagoshimensis, Kurtiella aff. bidentata, and Tegillarca granosa. In particular, Tegillarca granosa and Anadara kagoshimensis (the main fishery resources on the Boseong coast) accounted for 0.51-12.50% (average 4.00%) and 0.01-12.50% (1.92%), respectively. The planktonic bivalve larvae were most abundant from July to August. Anadara kagoshimensis was most abundant in early August but rare in the other investigated periods, whereas Tegillarca granosa was more abundant in late August. Bivalve larvae monitoring is important to predict the production of bivalve fisheries. Therefore, intensive monitoring is needed to understand the changes in planktonic bivalve larvae because potentially rapid turnover can respond to the ecological interaction of spawning bivalves.