• Title/Summary/Keyword: Cytochrome $cbb_3$-type oxidase activity

Search Result 3, Processing Time 0.017 seconds

Effect of Mutations of Five Conserved Histidine Residues in the Catalytic Subunit of the cbb3 Cytochrome c Oxidase on its Function

  • Oh Jeong-Il
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.284-292
    • /
    • 2006
  • The cbb3 cytochrome c oxidase has the dual function as a terminal oxidase and oxygen sensor in the photosynthetic bacterium, Rhodobacter sphaeroides. The cbb3 oxidase forms a signal transduction pathway together with the PrrBA two-component system that controls photosynthesis gene expression in response to changes in oxygen tension in the environment. Under aerobic conditions the cbb3 oxidase generates an inhibitory signal, which shifts the equilibrium of PrrB kinase/phosphatase activities towards the phosphatase mode. Photosynthesis genes are thereby turned off under aerobic conditions. The catalytic subunit (CcoN) of the R. sphaeroides cbb3 oxidase contains five histidine residues (H2l4, B233, H303, H320, and H444) that are conserved in all CcoN subunits of the cbb3 oxidase, but not in the catalytic subunits of other members of copper-heme superfamily oxidases. H214A mutation of CcoN affected neither catalytic activity nor sensory (signaling) function of the cbb3 oxidase, whereas H320A mutation led to almost complete loss of both catalytic activity and sensory function of the cbb3 oxidase. H233V and H444A mutations brought about the partial loss of catalytic activity and sensory function of the cbb3 oxidase. Interestingly, the H303A mutant form of the cbb3 oxidase retains the catalytic function as a cytochrome c oxidase as compared to the wild-type oxidase, while it is defective in signaling function as an oxygen sensor. H303 appears to be implicated in either signal sensing or generation of the inhibitory signal to the PrrBA two-component system.

Site-directed Mutagenesis of Five Conserved Residues of Subunit I of the Cytochrome cbb3 Oxidase in Rhodobacter capsulatus

  • Ozturk, Mehmet;Gurel, Ekrem;Watmough, Nicholas J.;Mandaci, Sevnur
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.697-707
    • /
    • 2007
  • Cytochrome $cbb_3$ oxidase is a member of the heme-copper oxidase superfamily that catalyses the reduction of molecular oxygen to the water and conserves the liberated energy in the form of a proton gradient. Comparison of the amino acid sequences of subunit I from different classes of heme-copper oxidases showed that transmembrane helix VIII and the loop between transmembrane helices IX and X contain five highly conserved polar residues; Ser333, Ser340, Thr350, Asn390 and Thr394. To determine the relationship between these conserved amino acids and the activity and assembly of the $cbb_3$ oxidase in Rhodobacter capsulatus, each of these five conserved amino acids was substituted for alanine by site-directed mutagenesis. The effects of these mutations on catalytic activity were determined using a NADI plate assay and by measurements of the rate of oxygen consumption. The consequence of these mutations for the structural integrity of the $cbb_3$ oxidase was determined by SDS-PAGE analysis of chromatophore membranes followed by TMBZ staining. The results indicate that the Asn390Ala mutation led to a complete loss of enzyme activity and that the Ser333Ala mutation decreased the activity significantly. The remaining mutants cause a partial loss of catalytic activity. All of the mutant enzymes, except Asn390Ala, were apparently correctly assembled and stable in the membrane of the R. capsulatus.

Analysis of the orf 282 Gene and Its Function in Rhodobacter sphaeroide 2.4.1 (R. sphaeroides 에서의 orf282 유전자의 분석과 이들의 기능)

  • Son, Myung-Hwa;Lee, Sang-Joon
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1009-1017
    • /
    • 2012
  • The orf282 gene of Rhodobacter sphaeroides is located between the ccoNOQP operon encoding $cbb_3$ terminal oxidase and the fnrL gene encoding an anaerobic activator, FnrL. Its function remains unknown. In an attempt to reveal the function of the orf282 gene, we disrupted the gene by deleting a portion of the orf282 gene and constructed an orf282-knockout mutant. Two FnrL binding sites were found to be located upstream of orf282, and it was demonstrated that orf282 is positively regulated by FnrL. The orf282 gene is not involved in the regulation of spectral complex formation. The $cbb_3$ oxidase activity detected in the orf282 mutant was comparable to that in the wild-type sample, indicating that the orf282 gene is not involved in the regulation of the ccoNOQP operon and the biosynthesis of the cbb3 cytochrome c oxidase. The elevated promoter activity of the nifH and nifA genes, which are the structural genes of nitrogenase and its regulator, respectively, in the orf282 mutant, suggests that the orf282 gene product acts as a negative effector for nifH and nifA expression.