• Title/Summary/Keyword: Cysteine proteinase

Search Result 54, Processing Time 0.027 seconds

Characterization of a cysteine proteinase from adult worms of Paragonimus westermani (폐흡충(Parnonimr westemani)성충에서 정제한 cysteine proteinase의 특성)

  • 송철용;김동수
    • Parasites, Hosts and Diseases
    • /
    • v.32 no.4
    • /
    • pp.231-242
    • /
    • 1994
  • Pnragonimus westermnni, the lung fluke, is known to migrate to the pulmonary tissue of mammalian hosts and causes pathological changes in the lungs. An acidic thiol-dependent proteinase with a molecular weight of approximately 20,000 daltons was purified to homogeneity using ion-exchange chromatography and gel filtration chromatography. On SDS-PAGE, the molecular weight of the enzyme was 17,500 daltons. Isoelectric point was 6.45. The enzyme was similar to the acidic cysteine proteinase of vertebrates in the properties of pH optimum, substrate specificity and inhibitor sensitivity. Enzymatic activity was stable at pH 5.5 for at least two days when stored at 4℃. The cysteine proteinase was capable of degrading collagen and hemoglobin. Sera of patients with paragonimiasis and mice infected with R westermani reacted in immunoblots with the partially purified proteinase. This result suggested that the cysteine proteinase of P. westermnni may play a role in migration in tissues, and in acquisition of nutrients by parasites from the host. It is also potentially an antigen for the serodiagnosis of paragonimiasis.

  • PDF

Isolation and Partial Characterization of Cysteine Proteinase from Sparganum (스파르가눔 총체에서 분리한 cysteine proteinase의 정제 및 부분 특성)

  • 송철용;최동호
    • Parasites, Hosts and Diseases
    • /
    • v.30 no.3
    • /
    • pp.191-200
    • /
    • 1992
  • A proteolytic enzyme was purified from the tissue extract of spargana (plerocercoids of Spirometra erinacei) by DEAE-Trisacryl M ion exchange chromatography and thiopropyl-sepharose affinity chromatography resulted in a 21-fold purification. The proteinase activity was assayed with a synthetic fluorescent substrate, carbobensoxy-phenylalanyl-7-amiso-4-trifluoromethyl-coumarin. SDS-polyacplamide gel electrophoresis of the purified materials revealed a single 28,000 dalton band. Inhibitor profiles of the band indicated that it belonged to cysteine endopeptidases. It exhibited identical pH curves with optimum at pH 5,5, and 50% activity from pH 4.7 to 8. It could completely degrade collagen chains to three identical products. It also showed some activity on hemoglobin. Furthermore, the band on immunoblots was reactive to the sera of sparganosis patients. These results suggest that the proteolytic enzyme belongs to cysteine proteinase which plays a role in the tissue penetration. Also it may be used as the antigen for diagnosis of active sparganosis.

  • PDF

Purification of a 68-kDa cysteine proteinase from crude extract of Pneumocystis carinii

  • Choi, Min-Ho;Chung, Byung-Suk;Chung, Young-Bae;Yu, Jae-Ran;Cho, Sang-Rock;Hong, Sung-Tae
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.3
    • /
    • pp.159-166
    • /
    • 2000
  • The present study intended to verify activities of cysteine proteinase of Pneumocystis carinii from rats and to purify the enzyme. In order to exclude the contamination of host-derived enzymes, concentrates of P. carinii was primarily treated with a mixture of proteinase inhibitors before Iysis of P carinii. A 68-kDa cysteine proteinase was finally purified from the crude extract of P. carinii by 4 sequential chromatographic methods. The enzyme showed an optimal activity at pH 5.5 in 0.1 M sodium acetate, and its activity was specifically inhibited by L-trans-epoxy-succinylleucylamido (4-guanidino) butane (E-64) and iodoacetic acid, suggesting that the enzyme is a cysteine proteinase. The 68-kDa proteinase weakly digested rnacrornolecules such as collagen, hemoglobin and fibronectin. The present study demonstrated the activity of cysteine proteinase at the 68-kDa band of P. carinii, and purified and characterized the molecule.

  • PDF

Degradations of human immunoglobulins and hemoglobin by a 60 kDa cysteine proteinase of Trichomonas vaginalis (질편모충의 60 kDa 시스테인 단백분해효소의 인체 면역글로불린 및 헤모글로빈 분해능)

  • Duk-Young MIN;Keun-Hee Hyun;Jae-Sook Ryu;Myoung-Hee AHN;Myung-Hwan CHO
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.4
    • /
    • pp.261-268
    • /
    • 1998
  • The present study was undertaken to investigate the role of cysteine proteinase of Trichomonas vaginalis in escaping from host defense mechanism. A cysteine proteinase of T. vaginalis was purified by affinity chromatography and gel filtration. Optimum pH for the purified proteinase activity was 6.0. The proteinase was inhibited by cysteine and serine proteinase inhibitors such as E-64, NEM, IAA, leupeptin. TPCK and TLCK, and also by $Hg^{2+}$, but not affected by serine-, metallo-, and aspartic proteinase inhibitors such as PMSF, EDTA and pepstatin A. However, it was activated by the cysteine proteinase activator, DTT. The molecular weight of a purified proteinase was 62 kDa on gel filtration and 60 kDa on SDS-PAGE. Interestingly, the purified proteinase was able to degrade serum IgA, secretory IgA, and serum IgG in time- and dose-dependent manners. In addition, the enzyme also degraded hemoglobin in a dose-dependent manner. These results suggest that the acidic cysteine proteinase of T. vaginalis may play a dual role for parasite survival in conferring escape from host humoral defense by degradation of immunoglobulins, and in supplying nutrients to parasites by degradation of hemoglobin.

  • PDF

Characterization of the partially purified proteinase from Trichomonas vaginalis (질편모충으로부터 부분정제한 단백질 분해효소의 특성)

  • Min, Deuk-Yeong;Ryu, Jae-Suk;Hyeon, Geun-Hui
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.1
    • /
    • pp.49-58
    • /
    • 1996
  • Characterization of a purified proteinase from T4chomoncs uoginalis was carried out using bacitracin-sepharose affinity chromatography. Trichomonos uqginolis KT-9 isolate was used as a source of eye study Proteinase activity was determined using Bz-Pro- Phe-Arg-Nan as the substrate. Optimum pH for the purified proteinase activity was 7.0 and 6.0, 9.0 with DTT. Optimum temperature was 37℃ and isoelectric point was 7.2 Activity of this proteinase was inhibited by E-64, antipain, leupeptin, Hg2+ and Zn2+ and activated by DTT and cysteine. Activity of the purified proteinase was visualized by gelatin SDS- PAGE. The gelatinolytic activity of the purified proteinase was inhibited by E-64, antipain, leupeptin, and IAA, but not by PMSF and EDTA. On SDS-PAGE, the molecular weight of the purified proteinase was 60,000 daltons. Sera of rabbits infected with T. vaginalis reacted specifically in immunoblots with this proteinase. These results indicate that 60 kDa of purified proteinase was cysteine proteinase with antigenicity.

  • PDF

Cytotoxicity of a cysteine proteinase of adult Clonorchis sinensis (간흡충의 cysteine 단백분해효소의 세포독성)

  • Hyun PARK;Man Young KO;Moon Kee PAIK;Ching Thack SOH;Jang Hoon SEO;Kyung-il IM
    • Parasites, Hosts and Diseases
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 1995
  • To clarify the correlation of the proteinase activity with pathogenicity of Clonorrhis sinensis, the proteinase activity either in excretory-secretory products (ESP) or in crude extracts of adult C. sinensis was examined. Substrate gel electrophoresis of the ESP and crude extracts revealed four distinct enzyme bands, which were differently inhibited by the specific proteinase inhibitors. The proteinase of the ESP with molecular mass of 24 kDa, was purified 23-fold with 14.5% yield by spectra gel ACA 44 gel filtration. It exhibited optimal pH at 7.5 in sodium phosphate (0.1 M). Its activity was inhibited specifically by N-ethylmaleimide (NEMI and antipain whereas potentiated 1.9 folds in the presence of 5 mM dithiothreitol (DTT). Cytotoxicity of the proteinase increased in a dose- dependent manner up to 120 ㎍/ml while reduced by NEM and antipain, indicating that cysteine proteinase was responsible for the cytotoxicity. This result shows that the 24 kDa cysteine proteinase is deeply correlated with the pathogenicity of C. sinensis infection.

  • PDF

Properties and Thermostability of Gelatin-degrading Proteinases in the Fruit of Actinidia chinensis (Kiwifruit) (Kiwifruit 과육에 존재하는 단백질분해효소의 특성과 열안정성)

  • 오순자;김성철;고석찬
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.752-758
    • /
    • 2002
  • This study was investigated on properties and thermostability of gelatin-degrading proteinases in the fruit of Actinidia chinensis (kiwifruit) for the industrial application. Three gelatin-degrading proteinases (PI, PII and PIII) were detected from the pulp of fruits. The molecular weights of these proteinases, PI, PII and PIII, were approximately 220 kD, 51 kD, and 26 kD respectively, on the basis of gelatin-containing SDS-PACE. The optimum pH of these proteinases ranged from 2.0 to 5.0 with a maximal activity at pH 4.0. These proteinases had a high sensitivity to E-64 and iodoacetate which are cysteine protease inhibitors, and required DTT, cysteine, and $\beta$-mercaptoethanol for their activities which are stimulators for cysteine proteases. These results indicate that these proteinases are cysteine proteinases and the proteinase PIII is actinidin (EC 3.4.22.14), based on the molecular weight and/or susceptibility against proteinase inhibitors. These proteinases were strongly activated by $Ca^{2+}$, $Mg^{2+}$ and $Mn^{2+}$, whereas strongly inhibited by Zn$^{2+}$ and Hg$^{2+}$. However, these proteinases have slightly different susceptibility against other cations ($Ca^{2+}$, $Cu^{2+}$, $Al^{3+}$, $Ca^{3+}$. The temperature stability of proteinase PIII was more stable than proteinases PI and PII. Moreover, proteinase PIII remained stable below $50^{\circ}C$ for 48hr, showing the residual activity above 75% of the enzyme activity.

Thermal Stability of Cysteine Proteinase Inhibitor of Tilapia (Oreochromis niloticus) Egg and Serum (Tilapia(Oreochromis niloticus) 난과 혈청 Cysteine Proteinase 저해제의 저온 및 열 안정성)

  • Choi, Seong-Hee;Kwon, Hyuk-Chu;Kwon, Joon-Yeong
    • Development and Reproduction
    • /
    • v.10 no.4
    • /
    • pp.263-269
    • /
    • 2006
  • To evaluate the potentiality of industrial use of cysteine proteinase inhibitor (cystatin) of tilapia egg and serum stability of the tilapia cystatin on low temperature storage and heat treatment was studied. When the eggs were stored at $4^{\circ}C$ for 3 days the cystatin activity was not changed much, while the supernatant of egg homogenate lost its cystatin activity significantly, remaining only about 65% of initial activity. When the eggs and serum were subjected to repeated freeze at $-20^{\circ}C$ and thaw at room temperature once a day, the egg cystatin was decreased after 5 cycles of freeze and thaw. However the serum cystatin was not changed by the 5 times repetition of freeze and thaw. More than 80% of egg cystatin activity was remained when the egg was heated at $35^{\circ}C$ for 30 min, but less than 10% was remained when heated at $50^{\circ}C$. On the other hand, the serum cystatin was very resistant to heat, remaining about 74% after heating at as high as $80^{\circ}C$ for 30 min. In summary, the egg cystatin was more stable when stored as intact form of egg rather than as supernatant of homogenate when stored at refrigeration. Egg cystatin was relatively stable against repeated freeze-thaw, and serum was found to be more stable in cysteine proteinase inhibitory activity than egg. Egg cystatin was not very resistant to heat treatment, while serum cystatin was quite resistant to high temperature heat treatment. These results suggest that tilapia egg and serum, especially the serum, would be a useful source for cysteine proteinase inhibitor in surimi production.

  • PDF

Isolation of Cysteine Proteinase Gene (PgCysP1) from Panax ginseng and Response of This Gene to Abiotic Stresses (인삼으로부터 Cysteine Proteinase 유전자의 분리 및 환경 스트레스에 대한 반응)

  • Jeong, Dae-Young;Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • Cysteine proteinases play an essential role in plant growth and development but also in senescence and programmed cell death. They participate in both anabolic and catabolic processes. In addition, they are involved in signalling pathways and in the response to biotic and abiotic stresses. A cDNA clone encoding cysteine proteinase (CP) gene, designated PgCysP1, was isolated from Panax ginseng C. A. Meyer. Reverse transcriptase (RT)-PCR results showed that PgCysP1 expressed at different level in P. ginseng hairy root. Different stresses such as biotic as well as abiotic stresses triggered a significant induction of PgCysP1. The positive responses of PgCysP1 to the various stimuli suggested that PgCysP1 may help to protect the plant against reactive environmental stresses.

Isolation and characterization of a cDNA encoding a mammalian cathepsin L-like cysteine proteinase from Acanthmoeba healui

  • Hong, Yeon-Chul;Hwang, Mi-Yul;Yun, Ho-Cheol;Yu, Hak-Sun;Kong, Hyun-Hee;Yong, Tai-Soon;Chung, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • We have cloned a cDNA encoding a cysteine proteinase of the Acanthamoeba healui OC-3A strain isolated from the brain of a granulomatous amoebic encephalitis patient. A DNA probe for an A. healui cDNA library screening was amplified by PCR using degenerate oligonucleotide primers designed on the basis of conserved amino acids franking the active sites of cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteinases. Cysteine proteinase gene of A. healui (AhCPI) was composed of 330 amino acids with signal sequence, a proposed pro-domain and a predicted active site made up of the catalytic residues, $Cys^{25},{\;}His^{159},{\;}and{\;}Asn^{175}$. Deduced amino acid sequence analysis indicates that AhCPI belong to ERFNIN subfamily of C 1 peptidases. By Northern blot analysis. no direct correlation was observed between AhCPI mRNA expression and virulence of Acanthamoeba, but the gene was expressed at higher level in amoebae isolated from soil than amoeba from clinical samples. These findings raise the possibility that AhCPI protein may play a role in protein metabolism and digestion of phagocytosed bacteria or host tissue debris rather than in invasion of amoebae into host tissue.