• Title/Summary/Keyword: Cyp11a1

Search Result 68, Processing Time 0.022 seconds

Tissue Distribution and Toxicokinetics of 4-Tert-Octylphenol in Rats (4-Tert-Octylphenol의 랫드에서의 조직분포 및 독성동태에 관한 연구)

  • Kang Mi Kyung;Ahn Mee Ryung;Chung Hye Joo;Choi Sun Ok;Choi Hong Serk;Yang Ji Sun;Lee Yong Bok;Yoo Tae Moo;Sohn Soo Jung
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.195-203
    • /
    • 2004
  • 4-Tert-Octylphenol (OP) is a surfactant additive widely used in the manufacture of a variety of detergents and plastic products. OP can disrupt endocrine function in humans and animals. This study was carried out to obtain toxicokinetic parameters of OP in male Sprague-Dawley (SD) rats. Male rats were administered with OP by single oral application of 200 mg/kg body weight. Blood, urine and tissues samples were taken at several time intervals after administration. Analysis of samples for OP was performed by column-switching high performance liquid chromatography (HPLC). In addition, we exam-ined tissue distribution and accumulation of OP after single oral application of 50, 100, and 200 mg/kg, single intravenous injection of 1, 5 and 10 mg/kg or daily application of 50 mg/kg for 14 consecutive days. After single oral administration of 200 mg/kg, Cmax of 213 $\pm$ 123 ng/ml was reached within the first 1.3 hr (Tmax) in the plasma. AUC was calculated for 1,333$\pm$484 ngㆍhr/ml. The final elimination half-life of plasma was longer than that of urine, but urinary clearance was lower than oral. A very small fraction of OP (Fe < 0.0017%) was excreted in urine within 24 hr. These results indicated that the major excretion route of OP was not urine. The mean maximal tissue distribution of OP was obserbed at 6 hr after treatment and slowly decreased time-dependently. High OP concentrations were detected in fat at 24 hr. The OP in fat was slowly released with longer elimination half-life and lower clearance than that of other tissues. OP was not accumulated in the liver following single oral application but 14-day oral treatments resulted in two-fold accumulation. It was probably due to the saturation of detoxification pathways. On the other hand, the mRNA expression of cytochrome P450 isoforms except CYP2C11 was not affected by OP at any dose. The expression of CYP2C11 mRNA decreased in a dose-dependent manner. This result suggests that OP changes expression of the male-specific cytochrome P450 isoforms in rat liver, and these changes are closely related to the toxic and estrogenic effect of OP.

Effect of 17β-estradiol on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis (17β-estradiol이 기수산 물벼룩의 Ecdysteroid 경로에 미치는 영향)

  • In, Soyeon;Yoo, Jewon;Cho, Hayoung;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • 17β-estradiol (E2) is a natural hormone secreted by ovary, and continuously discharged from household and livestock wastewater into aquatic environment. Due to its strong estrogenic activity, it has adverse effects on development and reproduction in crustacean as an endocrine disrupting chemical. Although ecdysteroid signaling pathway play a key role in development in crustacean, little information on transcriptional modulation of ecdysteroid-related genes in response to E2 is available in small crustacean. Here, we investigated the acute toxicity of E2 to obtain 24-h LCx values in the brackish water flea Diaphanosoma celebensis. Time-dependent expression patterns of seven ecdysteroid pathway - related genes (CYP314a1, EcRA, EcRB, USP, ERR, Vtg, VtgR) were further examined using quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). As results, 24-h LC50 and LC10 values were 9.581 mg/l and 4.842 mg/l, respectively. The mRNA expression of CYP314a1, EcRA, USP, VtgR was significantly up-regulated at 12 or 24 h after exposure to E2. These findings indicate that E2 can affect their molting and reproduction by modulating the expression of ecdysteroid pathway - related in D. celebensis. This study will be useful for better understanding of molecular mode of action of endocrine disrupting chemicals on molting process in small crustacean.

Determination of Dioxin-like Components in the School Waste Incinerator Residues by EROD-microbioassay (EROD-microbioassay에 의한 학교 소각로 잔재 중 다이옥신 유사물질의 측정)

  • 정규혁;오승민;윤완진
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.11-17
    • /
    • 2000
  • There are among the most relevant toxic emissions from incinerators such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (PCBs). Induction of cytochrome P4501A1 catalyzed 7-ethoxyresorufin O-deethylase(EROD) activity in mammalian cell culture(EROD bioassay) is thought to be a selective and sensitive parameter used for the quantification of dioxin-like components. In this study, the toxic emissions from several school waste incinerators were evaluated by determination of CYPIA catalytic activity and cytotoxicity using cell culture microbioassay. The incinerator residue and soil samples were collected from the schools located in Kyunggi province from April to June 1999. The samples were extracted in a Soxhlet apparatus using toluene for 20 hours. In order to clean-up, concentrated crude extracts were applied to basic alumina column. The EROD activities of extracts in the H4IIE cells were from 1.91$\pm$0.32 ng-TEQ/g to 24.54$\pm$3.48 ng-TEQ/g of biochemical-TEQ value. In soil samples, CYP1A catalytic activity was 0.09~0.64 ng-TEQ/g. EROD bioassay, seems to be a useful short-term bioassay when information about the biological response of complex environmental samples is needed. Although further study is needed, these results indicate that the potent toxic emissions are produced from school waste semi-incinerators.

  • PDF

Effect of 6-Hydroxydopamine (6-OHDA) on the Expression of Testicular Steroidogenic Genes in Adult Rats

  • Heo, Hyun-Jin;Ahn, Ryun-Sup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has been widely used to create animal model for Parkinson's disease (PD). The present study was undertaken to examine whether depletion of brain dopamine (DA) stores with 6-OHDA can make alteration in the activities of the testicular steroidogenesis in adult rats. Young adult male rats (3 months old) were received a single dose of 6-OHDA (200 ${\mu}g$ in 10 ${\mu}{\ell}$/animal) by intracerebroventricular (icv) injection, and sacrificed after two weeks. The mRNA levels of steroidogenesis-related enzymes were measured by qRT-PCRs. Serum testosterone levels were measured by radioimmunoassay. Single icv infusion of 6-OHDA significantly decreased the mRNA levels of CYP11A1 (control:6-OHDA group=$1:0.68{\pm}0.14$ AU, p<0.05), CYP17 (control:6-OHDA group=$1:0.72{\pm}0.13$ AU, p<0.05). There were no changes in the mRNA levels of $3{\beta}$-HSD (control:6-OHDA group=$1:0.84{\pm}0.08$ AU) and $17{\beta}$-HSD (control: 6-OHDA group=$1:0.63{\pm}0.20$ AU), though the levels tended to be decreased in the 6-OHDA treated group. Administration of 6-OHDA decreased significantly the mRNA level of StAR when compared to the level of saline-injected control animals (control:6-OHDA group=$1:0.72{\pm}0.08$ AU, p<0.05). Treatment with single dose of 6-OHDA remarkably lowered serum testosterone levels compared to the levels of control group (control:6-OHDA group=$0.72{\pm}0.24:0.13{\pm}0.03ng/m{\ell}$, p<0.05). Taken together with our previous study, the present study demonstrated that the activities of hypothalamus-pituitary-testis hormonal axis could be negatively affected by blockade of brain DA biosynthesis, and suggested the reduced reproductive potential might be resulted in the animals. More precise information on the testicular steroidogenic activities in PD patients and PD-like animals should be required prior to the generalization of the sex steroid hormone therapy to meet the highest standards for safety and efficacy.

Time-dependent Toxic Effects of Cadmium Chloride on the Stress-related Gene Expression, Growth and Reproduction of the Soil Nematode Caenorhabditis elegans (토양선충 Caenorhabditis elegans의 스트레스 관련 유전자 발현을 이용한 시간에 다른 카드뮴의 독성영향)

  • Roh, Ji-Yeon;Lee, Jeong-Gyeong;Kwon, Hyuk-Cu;Choi, Jin-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • 카드뮴은 환경과 인체 위해도에 큰 영향을 미치는 중요한 환경오염물질로 잘 알려져 있다. 본 연구에서는 토양선충인 Caenorhabditis elegans에 카드뮴을 12시간과 48시간으로 나누어 처리하여 시간에 따른 장, 단기적 독성영향을 알아보고자 하였다. 이때 생리학적 수준으로 성장 및 생식을 조사하고, 분자수준에서 스트레스 관련 유전자들의 시간에 따른 발현 정도를 관찰하였다. 생식에서는 단기노출(12시간) 시 그 영향이 대조군에 비해 크게 나타났으며, mtl-2의 스트레스 관련 유전자가 증가하였다 장기 노출(48시간) 시에는 cyp35a2, ape-1, sod-1, ctl-2 유전자가 대조군에 비해 약 $2{\sim}4$배 가량의 발현 증가 결과를 조사할 수 있었다. 본 연구결과들을 통해 스트레스 관련 유전자의 발현을 조사하는 것이 중요하고 민감한 생체지표가 된다는 것과 토양선충 C. elegans는 환경중 오염물질에 대한 장기, 단기적 영향을 평가하기 위한 좋은 생물학적 모델이 된다는 것을 알 수 있었다.

2'-Hydroxylation of Genistein Enhanced Antioxidant and Antiproliferative Activities in MCF-7 Human Breast Cancer Cells

  • Choi, Jung-Nam;Kim, Doc-Kyu;Choi, Hyung-Kyoon;Yoo, Kyung-Mi;Kim, Ji-Young;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1348-1354
    • /
    • 2009
  • Bioconversion of the isoflavonoid genistein to 2'-hydroxygenistein (2'-HG) was performed using isoflavone 2'-hydroxylase (CYP81E1) heterologously expressed in yeast. A monohydroxylated product was analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and NMR spectrometry and was identified as 2'-HG. An initial bioconversion rate of 6% was increased up to 14% under optimized conditions. After recovery, the biological activity of 2'-HG was evaluated. Bioconverted 2'-HG showed higher antioxidant activity against 1,1-diphenyl-2-picryl hydrazine (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals than did genistein. Furthermore, 2'-HG exhibited greater antiproliferative effects in MCF-7 human breast cancer cells than did genistein. These results suggest that 2'-hydroxylation of genistein enhanced its antioxidant activity and cell cytotoxicity in MCF-7 human breast cancer cells.

A case of 17 alpha-hydroxylase deficiency

  • Kim, Sung Mee;Rhee, Jeong Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.72-76
    • /
    • 2015
  • $17{\alpha}$-hydroxylase and 17,20-lyase are enzymes encoded by the CYP17A1 gene and are required for the synthesis of sex steroids and cortisol. In $17{\alpha}$-hydroxylase deficiency, there are low blood levels of estrogens, androgens, and cortisol, and resultant compensatory increases in adrenocorticotrophic hormone that stimulate the production of 11-deoxycorticosterone and corticosterone. In turn, the excessive levels of mineralocorticoids lead to volume expansion and hypertension. Females with $17{\alpha}$-hydroxylase deficiency are characterized by primary amenorrhea and delayed puberty, with accompanying hypertension. Affected males usually have female external genitalia, a blind vagina, and intra-abdominal testes. The treatment of this disorder is centered on glucocorticoid and sex steroid replacement. In patients with $17{\alpha}$-hydroxylase deficiency who are being raised as females, estrogen should be supplemented, while genetically female patients with a uterus should also receive progesterone supplementation. Here, we report a case of a 21-year-old female with $17{\alpha}$-hydroxylase deficiency who had received inadequate treatment for a prolonged period of time. We also include a brief review of the recent literature on this disorder.

Analysis of Genes Regulated by HSP90 Inhibitor Geldanamycin in Neurons

  • Yang, Young-Mo;Kim, Seung-Whan;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.97-99
    • /
    • 2009
  • Geldanamycin is a benzoquinone ansamycin antibiotic that binds to cytosol HSP90 (Heat Shock Protein 90) and changes its biological function. HSP90 is involved in the intracellular important roles for the regulation of the cell cycle, cell growth, cell survival, apoptosis, angiogenesis and oncogenesis. To identify genes expressed during geldanamycin treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up-or down-regulated genes) which are geldanamycin differentially expressed in neurons. Granzyme B is the gene most significantly increased among 204 up-regulated genes (more than 2 fold over-expression) and Chemokine (C-C motif) ligand 20 is the gene most dramatically decreased among 491 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Cxc110, Cyp11a1, Gadd45a, Gja1, Gpx2, Ifua4, Inpp5e, Sox4, and Stip1 are involved stress-response gene, and Cryab, Dnaja1, Hspa1a, Hspa8, Hspca, Hspcb, Hspd1, Hspd1, and Hsph1 are strongly associated with protein folding. Cell cycle associated genes (Bc13, Brca2, Ccnf, Cdk2, Ddit3, Dusp6, E2f1, Illa, and Junb) and inflammatory response associated genes (Cc12, Cc120, Cxc12, Il23a, Nos2, Nppb, Tgfb1, Tlr2, and Tnt) are down-regulated more than 2 times by geldanamycin treatment. We found that geldanamycin is related to expression of many genes associated with stress response, protein folding, cell cycle, and inflammation by DNA microarray analysis. Further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by geldanamycin. The resulting data will give the one of the good clues for understanding of geldanamycin under molecular level in the neurons.

  • PDF

Association Analysis of the Essential Hypertension Susceptibility Genes in Adolescents: Kangwha Study (청소년 고혈압 관련 유전자의 연관성 분석: Kangwha Study)

  • Suh, Il;Nam, Chung-Mo;Kim, Sung-Joo;Shin, Dong-Jik;Hur, Nam-Wook;Kang, Dae-Ryong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.2
    • /
    • pp.177-183
    • /
    • 2006
  • Objectives : In this study we examined the association between the genetic markers ACE (A-240T, C-93T, I/D, A2350G), AGT (M235T), AT1R (A1166C), CYP11B2 (T344C, V386A), REN (G2646A), ADRB2 (G46A, C79G, T47C, T1641), GNB3 (C825T) and ADD1 (G460W) and the presence of essential hypertension in adolescents. Methods : The Kangwha Study is an 18-year prospective study that is aimed at elucidating the determinants of the blood pressure level from childhood to early adulthood. For this study, we constructed a case-control dataset of size of 277 and 40 family trios data from the Kangwha Study. For this purpose, we perform a single locus-based case-control association study and a single locus-based TDT (transmission/disequilibrium test) study. Results : In the case-control study, the single locus-based association study indicated that the ADD1 (G460W) (p=0.0403), AGT (M235T) (p=0.0002), and REN (G2646A) (p=0.0101) markers were significantly associated with the risk of hypertension. These results were not confirmed on the TDT study. This study showed that genetic polymorphisms of the ADD1, AGT and REN genes might be related to the hypertension in Korean adolescents. Conclusions : This study provided useful information on genetics markers related to blood pressure. Further study will be needed to confirm the effect of the alpha adducin gene, the angiotensinogen gene and the renin gene on essential hypertension.

Administration of antibiotics contributes to cholestasis in pediatric patients with intestinal failure via the alteration of FXR signaling

  • Xiao, Yongtao;Zhou, Kejun;Lu, Ying;Yan, Weihui;Cai, Wei;Wang, Ying
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.14.1-14.14
    • /
    • 2018
  • The link between antibiotic treatment and IF-associated liver disease (IFALD) is unclear. Here, we study the effect of antibiotic treatment on bile acid (BA) metabolism and investigate the involved mechanisms. The results showed that pediatric IF patients with cholestasis had a significantly lower abundance of BA-biotransforming bacteria than patients without cholestasis. In addition, the BA composition was altered in the serum, feces, and liver of pediatric IF patients with cholestasis, as reflected by the increased proportion of primary BAs. In the ileum, farnesoid X receptor (FXR) expression was reduced in patients with cholestasis. Correspondingly, the serum FGF19 levels decreased significantly in patients with cholestasis. In the liver, the expression of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), increased noticeably in IF patients with cholestasis. In mice, we showed that oral antibiotics (gentamicin, GM or vancomycin, VCM) reduced colonic microbial diversity, with a decrease in both Gram-negative bacteria (GM affected Eubacterium and Bacteroides) and Gram-positive bacteria (VCM affected Clostridium, Bifidobacterium and Lactobacillus). Concomitantly, treatment with GM or VCM decreased secondary BAs in the colonic contents, with a simultaneous increase in primary BAs in plasma. Moreover, the changes in the colonic BA profile especially that of tauro-beta-muricholic acid ($T{\beta}MCA$), were predominantly associated with the inhibition of the FXR and further altered BA synthesis and transport. In conclusion, the administration of antibiotics significantly decreased the intestinal microbiota diversity and subsequently altered the BA composition. The alterations in BA composition contributed to cholestasis in IF patients by regulating FXR signaling.