• 제목/요약/키워드: Cylindrical vector beam

검색결과 5건 처리시간 0.018초

면외변위 측정을 위한 홀로그래피 간섭게에서 발산빔과 원통표면에 대한 오차해석 (The Analysis on the Error of Diverging Beam and Cylindrical Surface in Holographic Interferometer for Measuring out-of-plane Displacement.)

  • 강영준;문상준
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.128-134
    • /
    • 1997
  • Holographic interferometry is a useful whole-field nondestructive tesing method for measuring deformations and vibrations of engineering structure. In practical way most holographic interferometer uses a diverging beam, a point light source. When an oject is relatively small, the optical arrangement using a collimated light source has no difficulty technically but for a large object the collimated beam connot be applied anymore practically. In this paper we calculate the error of measured displacement from the sensi- tivity vector dominated by the geometry of optical arrangement for holographic interferometer and show the result with 2-D plots. A plane surface and a cylindrical surface were chosen as objects to be measured and the results from the cases of a diverging and a collimated beams were compared and analyzed.

  • PDF

면외변위 측정을 위한 홀로그래픽 간섭계의 민감도백터의 오차 해석 (Analysis on the error of sensitivity vector of holographic interferometer for measuring out-of-plane displacement)

  • 문상준;강영준;백성훈;김철중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.515-518
    • /
    • 1994
  • Holographic interferometry is a useful whole-field nondestructive testing for measuring deformations and vibrations of engineering structure. A diverging beam is used as a light source int the most of holographic interferometer practically. For a relatively small object the optical arrangement using a collimated light source has no difficulty in use technically, but for a large object it is difficult to use a collimated beam. In this study we calculate the error of measured displacement from the sensitivity vector dominated by the geometry of optical arrangement for holographic interferometer and show the result obtained with 2-D plots. A Plane surface and a cylindrical surface were chosen as objects to be calculated and computer analysis was carried out for the cases of a diverging beam and a collimated one.

  • PDF

Rigorous Analysis on Ring-Doped-Core Fibers for Generating Cylindrical Vector Beams

  • Kim, Hyuntai;Kwon, Youngchul;Vazquez-Zuniga, Luis Alonso;Lee, Seung Jong;Park, Wonil;Ham, Youngsu;Song, Suhyung;Yang, Joong-Hwan;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.650-656
    • /
    • 2014
  • We propose a novel active fiber design for selectively generating cylindrical vector beams (CVBs) or cylindrical vector modes (CVMs) which can be applied to conventional fiber lasers. A fiber is designed to have a ring-shaped core refractive index profile which can lead to the best overlap between the active dopant distribution profile and the lowest-order CVM (LCVM) field profile. Therefore, the overlap factor (OVF) of the LCVM becomes even higher than that of the fundamental mode. We emphasize that this condition cannot be satisfied by a conventional step-index core fiber (SICF) but by the ring-doped core fiber (RDCF). Because the lasing threshold is inversely proportional to the OVF, the LCVM can predominantly be stimulated even without going through special procedures to impose extra loss mechanisms to the fundamental mode. We numerically verify that the OVF of the LCVM with the doped ions can significantly exceed that of the fundamental mode if the proposed fiber design is applied. In addition, an RDCF of the proposed fiber design can also operate in a regime containing no higher-order modes besides the LCVM, so that it can selectively and efficiently generate the LCVM without being disrupted by the parasitic lasing of the higher-order modes. We highlight that an optimized RDCF can lead to a >30 % higher OVF ratio than a SICF having the same doped area. The proposed model is expected to be useful for enhancing the efficiency of generating CVBs in an all-fiber format.

Scanning Stereoscopic PIV for 3D Vorticity Measurement

  • SAKAKIBARA Jun;HORI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.1-13
    • /
    • 2004
  • A scanning stereo-PIV system was developed to measure the three-dimensional distribution of three-component velocity in a turbulent round jet. A laser light beam produced by a high repetition rate YLF pulse laser was expanded vertically by a cylindrical lens to form a laser light sheet. The light sheet is scanned in a direction normal to the sheet by a flat mirror mounted on an optical scanner, which is controlled by a programmable scanner controller. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and stereoscopic PIV method was adopted to acquire the 3D-3C-velocity distribution of turbulent round jet in an octagonal tank filled with water. The jet Reynolds number was set at Re=1000 and the streamwise location of the measurement was fixed at approximately x = 40D. Time evolution of three-dimensional vortical structure, which is identified by vorticity, is visualized. It revealed that the existence of a group of hairpin-like vortex structures was quite evident around the rim of the shear layer of the jet. Turbulence statistics shows good agreement with the previous data, and divergence of a filtered (unfiltered) velocity vector field was $7\%\;(22\%)$ of root-me an-squared vorticity value.

  • PDF

Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰 (LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy)

  • 김황수
    • Applied Microscopy
    • /
    • 제37권2호
    • /
    • pp.123-133
    • /
    • 2007
  • Al합금(Al-2.5Cu-1.5Mg wt.%)의 석출물 특히 S-상석출입자 $(Al_2CuMg)$ 부근의 변형장 (strain fields)에 대해 LACBED 관찰 연구가 처음으로 수행되었다. 변형장 강도에 대한 정량적 분석을 위해서는 대응되는 LACBED패턴 시뮬레이션 필요하다. 이를 위해 S-입자에 대해서 형태가 단순한 $a_s$-축을 가진 원기둥 모양을 갖고 변형장의 격자변위 벡터가 이 축에 수직 방향을 갖는다고 가정했다. 이런 단순한 모델을 가지고 변형장에 대한 관찰 패턴과 시뮬레이션 사이 합리적인 일치를 얻었다. 그러나 합금의 초기 시효 단계에서는 의미 있는 변형장이 관측되지 않았다. 따라서 이 실험의 결과로 예상되는 것은 합금의 최대 경도를 갖는 시료에는 S-상 석출 입자들이 Al-모체에 복잡한 변형장 그물망을 만들고 이것이 합금 경도에 기여 할 것으로 사료된다.