• Title/Summary/Keyword: Cylindrical vector beam

Search Result 5, Processing Time 0.02 seconds

The Analysis on the Error of Diverging Beam and Cylindrical Surface in Holographic Interferometer for Measuring out-of-plane Displacement. (면외변위 측정을 위한 홀로그래피 간섭게에서 발산빔과 원통표면에 대한 오차해석)

  • Kang, Young-June;Moon, Sang-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.128-134
    • /
    • 1997
  • Holographic interferometry is a useful whole-field nondestructive tesing method for measuring deformations and vibrations of engineering structure. In practical way most holographic interferometer uses a diverging beam, a point light source. When an oject is relatively small, the optical arrangement using a collimated light source has no difficulty technically but for a large object the collimated beam connot be applied anymore practically. In this paper we calculate the error of measured displacement from the sensi- tivity vector dominated by the geometry of optical arrangement for holographic interferometer and show the result with 2-D plots. A plane surface and a cylindrical surface were chosen as objects to be measured and the results from the cases of a diverging and a collimated beams were compared and analyzed.

  • PDF

Analysis on the error of sensitivity vector of holographic interferometer for measuring out-of-plane displacement (면외변위 측정을 위한 홀로그래픽 간섭계의 민감도백터의 오차 해석)

  • 문상준;강영준;백성훈;김철중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.515-518
    • /
    • 1994
  • Holographic interferometry is a useful whole-field nondestructive testing for measuring deformations and vibrations of engineering structure. A diverging beam is used as a light source int the most of holographic interferometer practically. For a relatively small object the optical arrangement using a collimated light source has no difficulty in use technically, but for a large object it is difficult to use a collimated beam. In this study we calculate the error of measured displacement from the sensitivity vector dominated by the geometry of optical arrangement for holographic interferometer and show the result obtained with 2-D plots. A Plane surface and a cylindrical surface were chosen as objects to be calculated and computer analysis was carried out for the cases of a diverging beam and a collimated one.

  • PDF

Rigorous Analysis on Ring-Doped-Core Fibers for Generating Cylindrical Vector Beams

  • Kim, Hyuntai;Kwon, Youngchul;Vazquez-Zuniga, Luis Alonso;Lee, Seung Jong;Park, Wonil;Ham, Youngsu;Song, Suhyung;Yang, Joong-Hwan;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.650-656
    • /
    • 2014
  • We propose a novel active fiber design for selectively generating cylindrical vector beams (CVBs) or cylindrical vector modes (CVMs) which can be applied to conventional fiber lasers. A fiber is designed to have a ring-shaped core refractive index profile which can lead to the best overlap between the active dopant distribution profile and the lowest-order CVM (LCVM) field profile. Therefore, the overlap factor (OVF) of the LCVM becomes even higher than that of the fundamental mode. We emphasize that this condition cannot be satisfied by a conventional step-index core fiber (SICF) but by the ring-doped core fiber (RDCF). Because the lasing threshold is inversely proportional to the OVF, the LCVM can predominantly be stimulated even without going through special procedures to impose extra loss mechanisms to the fundamental mode. We numerically verify that the OVF of the LCVM with the doped ions can significantly exceed that of the fundamental mode if the proposed fiber design is applied. In addition, an RDCF of the proposed fiber design can also operate in a regime containing no higher-order modes besides the LCVM, so that it can selectively and efficiently generate the LCVM without being disrupted by the parasitic lasing of the higher-order modes. We highlight that an optimized RDCF can lead to a >30 % higher OVF ratio than a SICF having the same doped area. The proposed model is expected to be useful for enhancing the efficiency of generating CVBs in an all-fiber format.

Scanning Stereoscopic PIV for 3D Vorticity Measurement

  • SAKAKIBARA Jun;HORI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.1-13
    • /
    • 2004
  • A scanning stereo-PIV system was developed to measure the three-dimensional distribution of three-component velocity in a turbulent round jet. A laser light beam produced by a high repetition rate YLF pulse laser was expanded vertically by a cylindrical lens to form a laser light sheet. The light sheet is scanned in a direction normal to the sheet by a flat mirror mounted on an optical scanner, which is controlled by a programmable scanner controller. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and stereoscopic PIV method was adopted to acquire the 3D-3C-velocity distribution of turbulent round jet in an octagonal tank filled with water. The jet Reynolds number was set at Re=1000 and the streamwise location of the measurement was fixed at approximately x = 40D. Time evolution of three-dimensional vortical structure, which is identified by vorticity, is visualized. It revealed that the existence of a group of hairpin-like vortex structures was quite evident around the rim of the shear layer of the jet. Turbulence statistics shows good agreement with the previous data, and divergence of a filtered (unfiltered) velocity vector field was $7\%\;(22\%)$ of root-me an-squared vorticity value.

  • PDF

LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy (Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2007
  • The strain fields due to precipitates, especially S-phase $(Al_2CuMg)$ particles in Al-2.5Cu-1.5Mg wt.% alloy were first investigated with Large Angle Convergent Beam Electron Diffraction (LACBED) method. The work involves LACBED pattern simulations to estimate possibly the strength of the strain fields. To do this the morphology of S-particle was optimized as a cylindrical shape with $a_s$ axis, and the displacement vector of strain fields was assumed to be perpendicular to $a_s$ axis. With this simple model the reasonable fittings between the observed patterns of the strain fields and simulations were obtained. And in the early aging stage of the alloy the significant strain fields were not observed. As a result of this study it is expected that the strain fields due to S-phase precipitates in the stage with maximum hardness would make a complex networks to possibly contribute to hardiness of the alloy.